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ABSTRACT. Remote sensing can play an important 
role in phenological studies by monitoring the activity of 
vegetation communities at large spatial scales. Using 
data from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) acquired in 2001, we calculate the 
number of modes and key phenological transition dates, 
and examine spatial variation in phenological patterns 
on a global basis. To do this, a sigmoidal vegetation 
growth model is used to separately fit the increasing and 
decreasing sections of an annual trajectory of MODIS 
enhanced vegetation index (EVI) data.  Extreme values 
in the curvature change rate are derived from the fitted 
growth model to automatically determine both 
phenological transition dates and cycle modality.  
 
1. INTRODUCTION 

 
 Determination of global intra-annual vegetation 
phenology is important to models of terrestrial 
ecosystems, carbon exchange budgeting, and global 
climate change (Myneni et al. 1997; Schwartz 1999; 
White et al. 1997). Time series of normalized difference 
vegetation index (NDVI) data from the Advanced Very 
High Resolution Radiometer (AVHRR) have been widely 
applied for monitoring the dynamics of vegetation. 
However, these data have proven to be limited since 
AVHRR NDVI data saturate at relatively low values of 
leaf area index, possess poor geometric registration, are 
not atmospherically corrected, possess cloud 
contamination effects, and are affected by bi-directional 
effects and high-view angle biases (e.g. Goward et al. 
1991; Reed et al. 1994). Using time series of AVHRR 
NDVI data, a number of different methods have been 
developed for phenological analysis (Table 1). These 
methods work well at local and regional scales, or for 
specific vegetation types. However, these methods are 
difficult to implement globally since they involve 
empirical constants that are applied globally, and 
therefore generally do not account for ecosystem 
specific characteristics of vegetation growth. 
  Globally, multiple growth cycles may exist in 
agricultural, where double- or triple-cropping is common.  
Further, in semi-arid regions vegetation growth follows 
the annual cycle of precipitation, which can be 
characterized by multiple rainy seasons, although one 
cycle is often dominant. In a typical cycle, four 
successive phases of vegetation phenology (depending 
on both climate and ecosystem type) can be remotely 
sensed: greenup, maturity, senescence, and dormancy. 
These periods can be defined by the transition date of 
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onset of vegetation growth (Gd), the subsequent date of 
maturity onset (Md) with plant green leaf area reaching 
maximum, the date of onset of senescence (Sd), and 
the date of onset of full dormancy (Dd). The goal of this 
study is to identify the number of growth cycles and key 
phenological transition dates, and to examine the spatial 
variation of phenological patterns at a global scale. To 
do this, an annual time series of Moderate Resolution 
Imaging Spectroradiometer (MODIS) data are used. The 
temporal trajectory of vegetation index is bisected into 
increasing and decreasing sections using a moving 
window technique. A sigmoidal growth model is then 
used to fit each section and to identify corresponding 
vegetation phenological variables. Finally, geographic 
patterns of the global phenological variation are related 
to spatial patterns in climate forcing. 
 
Table 1. Methods currently used for phenology analysis 

in remote sensing 
Method Reference 

NDVI threshold Lloyd 1990 
Backward-looking moving averages Reed et al. 1994 
Largest NDVI increase Kaduk and Heimann 

1996 
Best fit line in a 70 day period Duchemin et al. 1999 
Normalized NDVI ratio >0.5 for 
greatest increase (onset) and 
decrease (offset) 

White et al. 1997 

Lowest value calculated from the 
derivative within five weeks and 
empirical coefficients 

Moulin et al. 1997 

 
2. MATERIALS AND METHODS 
 
2.1 MODIS Data  
 
 The MODIS instrument possesses seven spectral 
bands that are specifically designed for land 
applications with spatial resolutions ranging from 250 m 
to 1 km. These data are atmospherically corrected, 
cloud masked, and geometrically rectified. Using daily 
multi-angle surface reflectances collected over 16-day 
periods, one nadir BRDF (bi-directional reflectance 
distribution function) adjusted reflectance (NBAR) is 
generated for each MODIS land band at 1-km spatial 
resolution (Schaaf et al. 2002). The data set used for 
this analysis includes one year of NBAR data for the 
period from 1 January to 31 December 2001. 
Unfortunately, however, NBAR data were not acquired 
between 10 June and 11 July 2001 (two 16-day 
periods), due to instrument problems. 
 Because the enhanced vegetation index (EVI) has 
several advantages over NDVI (such as reduced 
sensitivity to soil and atmospheric effects), EVI were 
calculated for each 16-day NBAR based on the method 



developed by Huete et al. (2000). 
 Since EVI values for snow-covered surfaces differs 
significantly from those of soils and vegetation, 
information on snow cover is required. When more than 
half of the days in any given 16-day period are detected 
as snow covered, a snow flag is stored in the Quality 
Assurance (QA) field of the MODIS NBAR product. This 
provides a mechanism to flag snow covered areas. 
 Global climatic data are important to this study, 
since they are essential for illustrating the response of 
phenological variables to climate change. To this end, 
MODIS daytime Land Surface Temperature (LST) data 
with the same temporal and spatial resolution as MODIS 
NBAR data were compiled for this study. In addition, 
monthly precipitation data with a spatial resolution of 0.5 
degrees were acquired from the Global Ecosystems 
Database (GED, Kineman and Ohrenschall 1992).  
These precipitation data were interpolated from a time 
series of spatially independent station records. 
 
2.2 Processing of Annual EVI Time Series 
 
 Processing of temporal NBAR EVI data was carried 
out in the following sequence: (1) detection of normal 
background EVI, (2) identification of decreasing and 
increasing sections, (3) curve fitting by means of a 
sigmoidal vegetation growth model, (4) calculation of 
phenological transition dates. 
 (1) Detection of the normal background EVI. For 
phenological analysis, we distinguish between 
changeable vegetation and background EVI. The 
background EVI is defined as the minimum and stable 
value for a pixel without flood or snow effects within a 
year. This means that the background EVI may differ in 
each pixel, depending on the nature of the surface (e.g., 
bare soil versus dormant vegetation). Snow is the main 
factor causing irregular EVI variation since it covers 43-
47x106 km2 between December and February in the 
northern Hemisphere (Gutzler and Rosen 1992).  The 
presence of snow usually causes a dramatic drop in EVI 
value though the values are sometimes slightly higher 
than the background EVI when the snow reflectance in 
blue band is very high. When a (winter) snow period is 
identified based on the NBAR QA information, the EVI 
value is substituted with the most recent snow-free 
values.  
 (2) Identification of decreasing and increasing EVI. 
Prior to fitting a curve, it is necessary to identify periods 
of sustained EVI increase and decrease. To do this, a 
linear regression is applied within successive periods 
composed of five 16-day EVI values along an annual 
time series. Transitions from increasing to decreasing 
EVI trends are identified by a change from positive to 
negative slope within any given window, and vice versa. 
Slight decreases or increases of EVI may be caused by  
localized events such as drought or flooding instead of 
vegetation-growth cycles. To exclude such irregular 
variation, two rules are applied: (i) local EVI differences 
within a section should be larger than 35% of the annual 
EVI difference; (ii) local maximum EVI should be larger 
than 70% of annual maximum EVI. By calculating the 
number of increasing and decreasing sections, an 

arbitrary number of growth cycles can be produced for a 
given annual time series.  
  (3) Curve fitting. Sigmoidal growth models have 
been demonstrated to be effective for depicting  
vegetation growth curves (e.g., for  LAI and biomass) as 
a function of time (or cumulative temperature) using 
various field measurements (e.g., Ratkowsky 1983). In 
particular, logistic models have been extensively used to 
fit vegetation growth data (Darroch and Baker 1990). 
Because satellite vegetation index (VI) data are strongly 
correlated with green leaf area index (LAI), green 
biomass, and percent green vegetation cover (e.g., 
Myneni et al. 1997), nonlinear regression can be used to 
fit the NBAR EVI of each temporal section to a logistic 
curve of vegetation growth: 
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where t represents time in Julian days, a and b are the 
parameters associated with the rate of change in EVI, c 
is the maximum EVI value for a given period of 
vegetation growth, and d represents the initial 
background value. The four curve parameters were 
estimated using a least-square method for each section 
of vegetation growth. The fit was assessed using the 
root mean square (RMS) error and regression 
coefficient (R2) between original data and model 
estimates.  
 (4) Identification of phenological transition dates. 
Time series of EVI change from one approximately 
linear stage to another when vegetation transitions 
between phenological phases. Therefore, the curvature-
change rate (CCR; i.e., the derivative of curvature) 
derived from the logistic model can be used to identify 
phenological transition dates.  
 Specifically, transition dates correspond to the 
times at which the rate of change in curvature in the EVI 
data exhibits local minima or maximums. During the 
growth period, when vegetation transitions from a 
dormant state to maximum leaf area, three extreme 
points in a section of EVI curve can be inferred from  the 
CCR, which are associated with specific ecological 
activity (Fig.1). Two maximum values of CCR are 
associated with the onset of leaf growth and the onset of 
maximum leaf area. Minimum CCR values correspond 
to the time of most rapid vegetation growth. Transition 
dates indicating the onset of senescence and dormancy 
can be estimated in a similar fashion. Due to the 
diversity of global data, the EVI behavior in a few pixels 
may be very irregular, where the extreme points on the 
CCR go beyond a reasonable range for any given 
dates. In such cases, the dates corresponding to 90% of 
the minimal and maximal EVI, which are calculated from 
the fitted models for the corresponding section, are 
taken as the phenological transition dates. 
 
2.3 Spatial Covariation in Phenology and Climate 
 
LST maps and the resultant phenological maps (1 km) 
were re-projected to a common geographic projection 
with one-minute resolution. Zonal averages across one-
minute latitude intervals were then computed. The mean 



annual temperature (MAT) averaged from 16-day LSTs 
within one year was also calculated. The monthly 
precipitation was averaged for each 0.5 degree latitude 
zone, and the start and end dates (month) for the rainfall 
season were calculated based on thresholds of 20, 40 
and 60 mm/month respectively.  
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Fig.1. A schematic showing how transition dates are 
calculated using minimum and maximum values in the 
rate of change in curvature. The solid line is an idealized 
time series of a vegetation index, and the dashed line is 
the curvature change rate from the VI data. The circles 
indicate transition dates.  
 
3. RESULTS 
 
 Using the methods described above, the four 
phenological transition dates for up to two annual cycles 
were produced globally. The estimated transition dates 
were highly variable geographically, suggesting that 
complex interactions among environmental effects such 
as land cover, temperature, precipitation and human 
activities contribute to phenological variation at this 
scale. 
 
3.1 EVI Curves for Typical Land Cover Types 
 
 Representative samples of EVI curves for several 
IGBP (International Geosphere-Biosphere Programme) 
land cover types in the northern United States were 
selected to demonstrate the curve fitting procedure and 
calculation of phenological transition dates. These types 
include evergreen needleleaf forests (IGBP1), 
deciduous broadleaf forests (IGBP4), mixed forests 
(IGBP5), grasslands (IGBP10), cropland (IGBP12), and 
cropland/natural vegetation mosaics (IGBP14). While 
the biological interpretation of the model parameters is 
complex, a is positive and b is negative during EVI 
increase, and vice versa during EVI decrease (Table 2). 
For all cover types the RMS error was smaller than 
0.04, and R2 is larger than 0.95. The estimated 
phenological transition dates (Gd, Md, Sd, and Dd) for 
each curve are visually realistic (Fig. 2). These results 
indicate that the logistic model both provides a good fit 
to the temporal EVI pattern and is also able to 
realistically estimate the phenological transition dates. 
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Fig. 2. Logistic curves (solid lines) fitted to the NBAR 
EVI values (dots) for several IGBP land cover types in 
the northern USA. The stars indicate EVI values during 
snow periods when negative values are set to zero.  



Table 2. Estimated coefficients and goodness of fit for 
curves in figure 2. 

 Increase section Decrease section Fitness 
Land 

cover type 
a b c d a b c d RMS r2 

IGBP1 5.61 -0.074 0.15 0.29 -4.99 0.062 0.18 0.27 0.013 0.97 
IGBP4 28.7 -0.170 0.41 0.19 -8.09 0.064 0.44 0.19 0.036 0.95 
IGBP5 6.16 -0.078 0.23 0.28 -5.70 0.073 0.23 0.28 0.022 0.97 

IGBP10 8.08 -0.083 0.19 0.10 -4.14 0.050 0.16 0.12 0.009 0.99 
IGBP12 7.55 -0.058 0.57 0.13 -5.30 0.091 0.57 0.14 0.033 0.98 
IGBP14 6.65 -0.083 0.40 0.21 -6.43 0.067 0.38 0.23 0.016 0.99 

 
 Multiple growth and senescence cycles are most 
prevalent in the croplands of eastern China and in 
semiarid shrublands, grasslands in southern South 
America and Africa. Double crops in eastern China are 
used here to illustrate the estimation of multiple 
phenologic modes using piecewise logistic models (Fig. 
3). The first crop cycle starts in February, with transition 
dates of Julian day 47,81, 124 and 145, respectively. 
The second cycle begins in early July with 
corresponding transition dates of 186, 209, 245 and 281 
although the estimates of this second greenup onset 
may not be very accurate because of the data missing 
in June.  The overall RMS error for the fitness is 0.022 
and the R2 is 0.98 between the original EVI data and the 
fitted models.  
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Fig. 3. Logistic curve (solid line) fitting to the annual EVI 
values (dots) for a cropland pixel in eastern China. The 
stars indicate the EVI values during snow period.  
 
 3.2 Temperature Driven Changes in Phenology in 
Northern High Latitudes 
 
 Changes in phenologic patterns are apparent 
north of 38°N, and are associated with seasonal 
temperature variations. As expected, greenup onset 
occurs earlier (in March) in the southern USA (south of 
40°N), in April in the northern USA, and in June in 
northern Canada (Fig. 4). Dormancy onset spreads 
southward starting in late September in northern areas, 
reaching the southern USA in early November. This 
pattern changes in the Great Plains because of 
agriculture, where greenup occurs more than one month 
later than surrounding natural vegetation. Statistical 
analysis reveals that a 1.0o increase in mean annual 
temperature results in a 2.7 day advance in greenup 
and a 2.3 day delay in dormancy in North America (Fig. 
4). A similar pattern is observed in Eurasia.  
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Fig. 4.  Variation in average phenological dates and 
temperature along one-minute latitude intervals in North 
America. 

 
3.3 Vegetation Phenology and Seasonal Rainfall 
  
 Vegetation phenology strongly coincides with 
rainfall seasons in many areas. In Mediterranean 
regions and the southwest USA, the main growth of 
vegetation occurs in winter, spring, and the summer 
monsoon season. In these areas, vegetation is greatly 
stressed during summer because of limited soil 
moisture.  Outside of the equatorial regime, grass, shrub 
and savanna are the dominant vegetation types in Africa 
and southern South America, where water availability 
restricts the growth of green vegetation.  
 One of the most notable regions in which 
precipitation regimes influence vegetation activity is the 
Sahelian region in Africa, where phenological patterns 
depend strongly on precipitation and latitude. In this 
region, greenup typically starts in late July around 16°N 
and gradually advances southward to around 4.5°N in 
early March. This trend closely follows the rainfall 
season when monthly precipitation is larger than 20-40 
mm (Fig. 5a). After about four to seven months, 
dormancy begins. The spatial trend in EVI data for the 
period considered shows that dormancy starts early in 
early November just south of the Sahara desert, 
gradually shifts southward to about 9°N in early 
December, and then shifts to earlier dates southward. 
This pattern matches the latitudinal pattern when rainfall 
decreases to less than 20-40 mm/month, especially in 
the northern regions (Fig. 5b).    
 In contrast, vegetation greenup starts at the end of 
September south of tropical forest, shifts progressively 
later (to the end of October) in the region around 17°S, 
and occurs earlier again at a rate of 22 days per degree 
of latitude in the region between 23°S and 33°S. 
Changes in the onset of greenup seem to be strongly 
associated with a threshold of 20 mm of precipitation. 
Dormancy onset begins in July with a small oscillation in 
this area. The rainfall data reveal that plants do not start 
their dormant phases until the dry season with monthly 
rainfall less than 20 mm lasts about two months, while 
the spatial pattern of dormancy onset is still correlated 
to the start of dry season. 
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Fig. 5.  Variation in average phenological dates with the 
starting and ending dates of rainfall season in Africa. 
Pm represents the monthly precipitation. a). Greenup 
onset, b). dormancy onset. 
 
4. SUMMARY 
 
 The logistic model of vegetation growth provides a 
flexible means to monitor vegetation dynamics at global 
scales using remote sensing. The methodology 
presented in this work has several desirable properties. 
First, the behavior of the EVI data is described using a 
vegetation growth model, which is ecologically 
meaningful. Second, it treats each pixel individually 
without setting thresholds or empirical constants, so that 
the method is globally applicable. Finally, it is capable of 
identifying phenologic behavior characterized by 
multiple growth and senescence periods within a single 
year.  
 The results show that the MODIS-based estimates 
of phenological transition dates are geographically and 
ecologically consistent over the globe. In particular, the 
greenup wave gradually pushes northward and 
dormancy spreads southward above 38°N in the 
northern Hemisphere. These changes strongly coincide 
with temperature trends. Water availability results in a 
spatially irregular distribution of phenology in semiarid 
areas. Trends of phenological transition dates in Africa 
reveal that vegetation greenup onset follows the starting 
month of the rainfall season while dormancy onset 
begins after the dry season has begun for more than 
one month.      
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