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Weather plays a major role in the occurrence, severity, and 
spread of plant diseases.  Weather variables that influence 
development of plant diseases include air temperature, relative 
humidity (RH), leaf wetness, rainfall, and wind.  These variables can 
be used in disease management strategies such as disease-warning 
systems to reduce pesticide sprays and increase grower profits.  
Many growers, however, have been reluctant to adopt disease-
warning systems because the equipment required for on-site 
measurements is expensive and it takes time and expertise to set up 
the equipment and download data (Campbell and Madden, 1990).  
Site-specific estimation of weather variables is a potentially attractive 
alternative because it avoids or minimizes the expense and 
inconveniences associated with on-site measurements. 
 Site-specific weather estimates (up to 1 km2 resolution) are 
obtained using site-specific weather simulators (Magarey et al, 
2001).  SkyBit, Inc. (Bellefonte, PA) utilizes raw data from the 
National Weather Service (NWS), the Federal Aviation 
Administration (FAA), and the U.S. military (Magarey et al, 2001) 
and delivers site-specific weather estimates to end users by 
electronic mail or fax. 
 The objectives of this study were to (i) validate site-specific 
estimates of temperature, duration of periods with RH > 90%, leaf 
wetness duration, and rainfall amount and duration provided by 
SkyBit, Inc. against on-site measurements in the Midwestern U.S., 
(ii) spatially compare accuracy of site-specific commercial estimates 
of weather variables to ground-station measurements, and (iii) 
assess the impact of weather estimation errors on simulated 
performance of various disease-warning systems. 
 
MATERIALS AND METHODS 
 On-site measurement of weather variables.  Air 
temperature, RH, and rainfall were recorded hourly at 15 automated 
weather stations in Iowa (IA), Illinois (IL), and Nebraska (NE) (Fig. 1) 
from May to September of 1997, 1998, and 1999.  At each station, 
air temperature, RH, and rainfall were measured using a thermistor, 
an electronic hygrometer, and a tipping bucket rain gage, 
respectively.  Air temperature and RH were measured at a height of 
1.5 m whereas rainfall was measured at a 1-m height.  To record 
wetness, flat, printed-circuit electronic sensors (Model 237, 
Campbell Scientific, Logan, UT) were deployed at a 45o angle at 
each of the 15 weather stations in IA, IL, and NE.  The sensors were 
0.3 m above the ground and faced north at level and unobstructed 
sites on managed turf grass.  Sensor surfaces were covered with 
latex paint of proprietary composition (R. Olson, Savannah, GA, 
personal communication) in order to increase sensor sensitivity to 
small water droplets and to simulate emissivity of plant leaves (Lau 
et al, 2000).  The sensors were determined by field calibration to be 
accurate within 1 h/day.  An hour was scored as wet (“1”) when the 
sensors detected wetness for ≥ 30 min or dry (“0”) when wetness 
was detected for < 30 min. 
 Site-specific estimation of weather variables.  SkyBit, Inc. 
(Bellefonte, PA) provided, by electronic mail, model-derived hourly 
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 estimates of air temperature, RH, leaf wetness duration (LWD), 
rainfall, and wind speed for the 15 weather stations in IA, IL, and NE 
from May to September in 1997, 1998, and 1999.  RH data from 
both on-site measurements and site-specific estimates were used to 
determine duration of periods with RH > 90% because this index is 
used in several disease-warning systems, for example BLITECAST 
(Krause et al, 1975). 
 Validation of site-specific estimates against on-site 
measurements.  To avoid splitting dew periods between two days, a 
day was considered to run from 1200 noon to 1100 the following 
morning.  On-site measurements of weather variables were 
assumed to approximate reality.  Deviations of SkyBit estimates from 
on-site measurements were assumed to be errors.  Bias of SkyBit 
estimates was represented by mean error (ME) and accuracy was 
represented by mean absolute error (MAE) (Wilks, 1995).  Mean 
error was calculated as  
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in which n is the number of 24-hour periods during the 3-year study, 
e is the sum (discrete variables) or average (continuous variable = 
temperature) of hourly SkyBit estimates in a 24-hour period, m is the 
sum (discrete variables) or average (continuous variable = 
temperature) of hourly on-site measurements in a 24-hour period, 
and (ek, mk) are e and m in the kth 24-hour period. 
 

 

 
 
Fig. 1.  Locations of 15 weather stations in Iowa, Illinois, and 
Nebraska where on-site weather data were recorded, and for which 
SkyBit weather data were estimated from May to September of 
1997-1999. 

 
 Standard error of the mean (SEM), another measure of 
accuracy, was calculated as 

SEM = 
s
n

                                                                                   (3) 

where s is the square root of the average squared difference 
between SkyBit estimates and on-site measurements and n is the 
number of 24-hour periods in the 3-year study. 



                                                                                          

 Spatial comparison of accuracy of site-specific estimates 
to ground-station measurements.  Another way to assess errors 
of weather estimates is to compare these errors to those of 
measurements made by ground stations at various distances from a 
given site.  Thus, a grower or pest manager may choose between 
commercial estimates for his/her farm and measurements made 
some distance away from the farm.  Coefficients of determination 
(R2) for all pairs of the 15 weather stations included in the study 
were calculated for air temperature and used to gauge accuracy of 
using measurements at one station to estimate temperature at 
another station (Hubbard 1994), and these values were compared to 
overall mean R2 values for SkyBit temperature estimates.  In the 
same manner, the critical success index (Schaefer, 1990) was used 
to determine accuracy for LWD, daily duration of periods with RH > 
90%, and rainfall occurrence.     
 R2 and CSI values were used to determine the mean distance 
from one weather station to another at which accuracy of station-to-
station estimation was equivalent to accuracy of SkyBit estimates.  
R2 and CSI values from ground stations were plotted against 
corresponding distances between stations and corresponding values 
from SkyBit were overlapped on the plot for comparison.  The 
CART/SLD/Wind (Classification and Regression Tree/Stepwise 
Linear Discriminant/Wind) speed model developed by Kim et al 
(2002) was applied to LWD data to determine whether it enhanced 
spatial accuracy of SkyBit LWD estimation. 
 Impact of site-specific estimation errors on simulated 
performance of BLITECAST and the P-Days model.  Site-specific 
estimates and on-site measurements of maximum and minimum air 
temperature, rainfall amount, number of hours per day with RH > 
90%, and the maximum and minimum temperature during periods 
with RH > 90% were input into the disease management module of 
WISDOM, a computer program that helps potato growers in 
Wisconsin to make crop management decisions on a daily basis 
(Pscheidt and Stevenson 1986).  The disease management module 
of WISDOM contains the BLITECAST (Krause et al 1975) disease-
warning system for management of potato late blight caused by P. 
infestans, and a physiological days (P-Days) model (Pscheidt and 
Stevenson 1986) for management of potato early blight, caused by 
Alternaria solani.  Late blight development in BLITECAST depends 
mainly on RH > 90% and temperature during periods with RH > 
90%, whereas the P-Days model is entirely dependent on 
temperature.  In BLITECAST, fungicide sprays are initiated when a 
threshold of 18 severity values (DSVs) is reached.  In the P-Days 
model, a threshold of 300 P-Days signals the initial rise in airborne 
spore concentrations of A. solani.  At this time weekly protectant 
fungicide sprays are initiated for management of early blight. 
 Impact of site-specific estimation errors on simulated 
performance of a dew-dependent model.  On-site measurements 
and SkyBit estimates of temperature and LWD were input into TOM-
CAST (Gleason et al, 1995), which utilizes LWD and temperature as 
inputs (Madden et al, 1978).  An 85-to-96-day growing season was 
simulated.  The chlorothalonil option for fungicide application was 
used.  The CART/SLD/Wind (Classification and Regression 
Tree/Stepwise Linear Discriminant/Wind) speed model developed by 
Kim et al (2002) was applied to SkyBit LWD estimates to determine 
its impact on simulated performance of TOM-CAST.  The TOM-
CAST program was written in Microsoft Visual FoxPro (Microsoft 
Corporation, Redmond, WA).  The impact of the CART/SLD/Wind 
speed model on simulated performance of TOM-CAST was 
evaluated by comparing the number of sprays and mean absolute 
deviations, from on-site values, of SkyBit and model-corrected 
SkyBit cumulative severity values (DSVs). 

 Impact of site-specific estimation errors on simulated 
performance of a rain-dependent model.  Model prediction of 
post-bloom fruit drop of citrus caused by C. acutatum (Timmer and 
Zitco 1996) is based on the current number of infected flowers and 
total rainfall for the previous five days.  We chose this model 
because rainfall is its sole input.  The equation is 
 

y TD R= − + +715 12 0 44 100. . .                       (4) 
 
in which y is the percentage of infected flowers at the next disease 
assessment, TD is the total number of diseased flowers on 20 trees, 
and R is total rainfall (mm) during the past 5 days.  Fungicide 
applications are made if all of the following criteria are met: (i) y > 
20%, (ii) a significant portion of the crop (> 75%) is in bloom, and (iii) 
no fungicide application has been made the previous 14 days. 
 The model was simulated by inputting on-site and SkyBit 
rainfall data from 15 weather stations in the Midwest over a 3-year 
period (1997-1998).  The mean percentage of diseased flowers on a 
single assessment date, the number of fungicide sprays, and the 
time from the first disease assessment to the first fungicide spray 
were compared for on-site versus SkyBit data.  The computer 
program used in simulations was written in Microsoft FoxPro 
(Microsoft Corporation, Redmond, WA).  
 
RESULTS 
 Validation of site-specific estimates against on-site 
measurements.  SkyBit estimated daily mean temperature within 
0.2oC, but overestimated hourly daytime temperature by up to 0.4oC 
and underestimated hourly nighttime temperature by up to 0.4oC 
(Table 1; Fig. 2).  Mean hourly temperature was overestimated by up 
to 1.4oC when wetness or RH > 90% was measured, especially 
during daytime and pre-dawn hours. 
 SkyBit underestimated duration of periods with RH > 90% by 
an average of 4.2 h/day (Table 1).  Underestimation was consistent 
across sites, ranging from 1.3 to 7.5 h (Table 1).  SkyBit 
underestimated duration of periods with RH > 90% at all times of 
day; this underestimation was greatest during the night and least in 
the afternoon (Fig. 2). 
 Overall, SkyBit underestimated mean LWD by 1.3 h/day (Table 
1).  In a 24-hour period, SkyBit overestimated LWD during the day 
and underestimated it at night (Fig. 2).  Overestimation peaked at 
09:00, whereas underestimation peaked at 01:00 (Fig. 2). 
 On days when rain was either measured or estimated, or both, 
SkyBit overestimated rain duration by 2.6 h/day and rain amount by 
2.5 mm/day.  SkyBit misidentified non-rain days as rain days on 612 
of 5,236 days or 12% of the time.  In a 24-h period, SkyBit 
consistently overestimated hourly rainfall duration (by up 0.052 hr/hr) 
and amount (by up 0.07 mm/hr). 
 Spatial comparison of accuracy of site-specific estimates 
to on-site measurements.  SkyBit estimated daily mean 
temperature with greater accuracy than ground-station 
measurements made 71 km from a given site, the minimum site-to-
site distance for which the comparison was made (Fig. 3).  Accuracy 
of ground-station measurements of daily mean temperature declined 
rapidly with distance (Fig. 3).  SkyBit also detected daily rain 
occurrence with greater accuracy than ground-station 
measurements made at all distances evaluated (Fig. 3).  Accuracy of 
ground-station measurements of duration of periods with RH > 90% 
was greater than that of mean SkyBit estimates up to 585 km.  
Beyond this distance, accuracy of SkyBit estimates of duration of 
periods with RH > 90% exceeded that of ground-station 



                                                                                          

measurements (Fig. 3).  Accuracy of ground-station measurements 
of hourly wetness duration was greater than that of SkyBit estimates 
at all distances evaluated.  When the CARTD/SLD/wind speed 
model of Kim et al (2002) was applied to SkyBit wetness estimates, 
accuracy of SkyBit exceeded that of ground-station measurements 
at all distances evaluated (Fig. 3). 
 Impact of site-specific errors on performance of simulated 
disease-warning systems.  SkyBit data (duration of periods with 
RH > 90%) resulted in 11 compared (P < 0.0001) to 85 severity 
values for on-site data in simulated performance of the BLITECAST 
(potato late blight) disease-warning system.  SkyBit data delayed 
fungicide spray thresholds by up to 68 days.  In the physiological 
days (P-Days) model for predicting the likelihood of occurrence of 
potato early blight, SkyBit data (daily mean temperature) were as 
accurate as on-site data in predicting fungicide spray threshold 
dates. 
 In simulated performance of TOM-CAST, SkyBit data (LWD 
and temperature) resulted in an average of 3.7 compared (P = 0.03) 
to 4.7 fungicide sprays for on-site data during the simulated growing 
season.  The threshold for the first fungicide spray from SkyBit data, 
however, preceded that from on-site data in eight of 10 site-years.  
Application of the CARTD/SLD/Wind speed model of Kim et al 
(2002) to SkyBit data corrected the number of fungicide sprays from 
3.7 to 5. 
 In simulated performance of the rain-dependent model 
developed by Timmer and Zitko (1996) for management of post-
bloom fruit drop of citrus, SkyBit data resulted in 20.8% disease 
incidence (DI), 2.3 sprays (S), and 3.7 days from the first disease 
assessment to the first spray (DTFS) compared (P < 0.0001) to 
16.7%, 1.7, and 10.7 DI, S, and DTFS, respectively, for on-site data. 
 
DISCUSSION 
 Our study is the first comprehensive evaluation of the accuracy 
of site-specific weather estimation technology and its potential 
impact on performance of disease-warning systems.  We focused on 
all of the most commonly used weather inputs to disease-warning 
systems, whereas previous reports (Gleason et al, 1997, 2002) 
focused primarily on LWD. 
 SkyBit estimated daily mean temperature more accurately than 
duration of periods with RH > 90%, wetness duration, and rainfall 
duration and amount.  This accuracy is attributable to the property of 
temperature as a continuous variable, which can be estimated more 
accurately than a discrete (0 or 1) variable. 
 Spatial analysis of on-site and site-specific weather variables 
revealed that SkyBit estimates of daily mean temperature for a given 
location can be used reliably as temperature predictors for locations 
within a distance of ≤ 71 km.  In the Midwest, therefore, SkyBit 
temperature estimates for a given site could exceed accuracy of 
measurements made at ground-stations further than 71 km from the 
site. Errors in simulated performance of BLITECAST and TOM-
CAST using SkyBit data were mostly attributable to errors in 
estimation of hours of RH > 90% (BLITECAST) and LWD (TOM-
CAST).  The delayed spray thresholds when SkyBit data were input 
into BLITECAST resulted mainly from underestimation of hours of 
RH > 90%. 
 Underestimation of LWD by SkyBit was reflected in simulated 
performance of TOM-CAST, in which SkyBit data recommended, on 
average, fewer sprays than on-site data.  Work on application of the 
CARTD/SLD/Wind speed model (Kim et al 2002) to reduce 
deviations of SkyBit DSVs from on-site DSVs in simulated TOM-
CAST is ongoing.  Preliminary results suggest that the model has 

potential in improving accuracy of wetness-dependent disease-
warning systems. 
 SkyBit’s consistent overestimation of rainfall amount, which 
resulted in higher disease incidence and more fungicide sprays 
compared to on-site measurements in simulated performance of 
Timmer and Zitko’s (1996) rain-dependent model for prediction of 
post-bloom fruit drop of citrus, suggests that there is potential for 
economic loss if growers use SkyBit rainfall data in rain-dependent 
disease-warning systems. 
 In this study, we have demonstrated a high level of accuracy in 
SkyBit estimation of daily mean temperature for a given site and on 
a spatial scale.  Errors in SkyBit estimation of duration of periods 
with RH > 90%, rainfall duration and amount, and LWD suggest a 
need to identify the sources of these errors and to refine algorithms 
for estimation of these variables.  The CARTD/SLD/Wind speed 
model (Kim et al 2002) developed by our group is a significant step 
towards improvement of SkyBit accuracy in estimation of surface 
wetness duration.  Development of similar models for correction of 
SkyBit errors in estimation of duration of periods with RH > 90% and 
occurrence, duration, and amount of rainfall would greatly enhance 
utility of SkyBit’s site-specific weather estimates in disease-warning 
systems.  This could in turn spur wider adoption and implementation 
of disease-warning systems with a concomitant increase in grower 
profits and environmental health resulting from reduced pesticide 
use.  
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Fig. 2. Mean hourly SkyBit errors/day (SkyBit minus on-site) for 
three weather variables at 15 stations in Iowa, Illinois, and Nebraska 
(May to Sep 1997-1999). 
 
Opposite: Fig. 3. Accuracy with which weather variable predictions 
were made for a given location based on SkyBit estimates or on-site 
measurements at a location within a distance of 1296 km.  A. 
Temperature.  B. Rainfall occurrence.  C. RH > 90%.  D. Leaf 
wetness duration. 
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Table 1.  Mean errors between measured (on-site) and SkyBit-estimated values for temperature, RH � 90%, and leaf wetness duration from 15 sites in the Midwestern U.S., 1997-1999  
        

 Temperature (oC) Duration of periods with RH � 90% Wetness duration 
   (daily mean) (h/day) (h/day) 
    
City  nw MEx (oC) SEMy n ME SEM MAEz n ME SEM MAE 
 
Ames, IA  390 0.25 0.04 227 -3.19 0.24 3.66 358 -1.28 0.35 7.68 
Lewis, IA  428 0.61 0.04 197 -1.27 0.29 3.03 381 1.65 0.28 6.69 
Nashua, IA 429 0.16 0.03 253 -4.73 0.23 4.75 361 0.35 0.32 6.77 
Sutherland, IA 428 0.32 0.04 293 -5.06 0.24 5.11 381 -1.69 0.33 7.15 
Crawfordsville, IA 430 0.45 0.04 304 -4.38 0.23 4.46 366 -1.78 0.37 7.81 
Bellville, IL  400 0.29 0.04 343 -7.51 0.20 7.55 267 -1.67 0.48 8.02 
Bondville, IL 363 0.46 0.10 342 -5.37 0.21 5.46 327 -2.50 0.42 8.56 
Dixon Springs, IL 354 1.15 0.09 319 -3.85 0.25 4.56 326 -1.91 0.32 7.25 
Monmouth, IL 359 0.58 0.09 314 -6.76 0.28 6.79 322 -1.41 0.41 7.57 
St. Charles, Il 358 0.79 0.13 314 -5.17 0.22 5.23 320 -2.12 0.39 7.49 
Red Cloud, NE 458 -1.32 0.04 204 -1.92 0.17 2.04 389 -1.98 0.33 6.96 
Gordon, NE 460 -0.67 0.04 366 -2.12 0.20 2.66 389 -2.27 0.34 6.98 
O’neill, NE  406 -0.05 0.05 202 -3.55 0.28 3.65 321 -2.00 0.37 7.03 
Sidney, NE 459 -0.12 0.04 401 -1.83 0.16 2.12 387 0.16 0.26 4.86 
West Point, NE 461 0.29 0.04 307 -3.92 0.21 3.99 247 -2.98 0.36 7.77 
All 15 sites 6183 0.18  0.02 4386 -4.15 0.06 4.42 5142 -1.34 0.09 7.18 
      
wNumber of 24-hour periods in the analysis. 
xMean error. 
yStandard error of the mean 
zMean absolute error. 


