
3.5 INTEGRATING SCIENCE METADATA INTO PYTHON USING VISAD

William L. Hibbard*, Thomas M. Whittaker, and Curtis T. Rueden
University of Wisconsin, Madison, Wisconsin

1. THE VISAD DATA MODEL

The initial design motivation of the VisAD
system was to enable visualization of any data
defined in a scientific program, without the need
for users to custom-code display procedures for
new data structures they invented as they wrote
their programs. The solution was a data model
with schemas that could express any data defined
in common programming languages, combined
with a display model based on mappings from
primitive data types to primitive display types that
could be used to derive displays of complex data
types (Hibbard, Dyer and Paul, 1992; Hibbard,
1995).

The VisAD data schemas were patterned
after the two primary data-building features in
common programming languages: tuples and
arrays. Tuples are fixed length sequences of
simpler data types, which may have a variety of
different types (the obvious example is the C
language struct). Arrays are variable length
sequences of a simpler data type, where all array
elements have the same type (while this is not
true in all programming languages, it is true in
commonly used scientific languages such as
Fortran, C and C++).

In order to adequately support the VisAD
display model, the data model had to incorporate
certain other information absent in programming-
language data structure declarations. For one
thing, VisAD primitive types have names such as
time, latitude, temperature and pressure rather
than simply being declared as float or real. These
primitive names are used to define mappings to
primitive display type names (such as XAxis,
RGB, Animation and IsoContour). It is a
reasonable assumption that values in scientific
programs had such names, but they just aren’t
expressed because programming languages do
not provide ways to express them. Primitive type

names are one form of metadata integrated into
the VisAD data model.

Arrays in scientific programs generally
represent finite samplings of continuous functions,
but common programming languages provide no
way to express this. For example, images and
grids are stored in arrays, with one pixel or grid
point per array element. These images and grids
are really just finite samplings of continuous fields
of radiances, temperatures, etc. The VisAD data
model uses finite samplings of functions in place
of arrays. Thus for example a simple earth image
is represented as a finite sampling of a function
from latitude and longitude to radiance. This is
expressed by the VisAD schema:

((latitude, longitude) → radiance)

This representation allows navigation information
defining earth locations to be carried with image
pixels, so that an implementation of the VisAD
display model knows where to locate pixels on
earth-based display coordinates. Note that arrays
which are not finite samplings of continuous
functions can be represented by samplings of their
indices at integer values, which corresponds well
to array information in common programming
languages. The important thing is that for data like
images and grids, spatial and temporal metadata
are integrated in VisAD’s representation and
accessible by the display model.

Earth navigation can also be represented
by transforms between coordinate systems in
VisAD. For example, an earth image can have the
schema:

((line, element) → radiance)

coupled with the invertable coordinate transform:

(line, element) ↔ (latitude, longitude)

The VisAD data model allows units to be attached
to numerical values, so for example latitude and

Corresponding author address: William Hibbard,
SSEC, 1225 W. Dayton St., Madison, WI 53706

longitude values may have units of degrees or
radians.

A time sequence of earth images may
have schema:

(time → ((line, element) → radiance))

This representation would include a finite sampling
of time values, typically with units of seconds
since 0 GMT, 1 January 1970. It would also
include a finite sampling of (line, element) values,
typically a 2-D integer grid, with an invertiable
transform to (latitude, longitude) for earth
navigation. Note that the (line, element) sampling
and the invertible transform to (latitude, longitude)
may vary between time samples.

2. THE PYTHON INTERFACE TO VISAD

The VisAD data model integrates
metadata not expressed in common programming
languages, but it would be useful to make such
metadata accessible from scientific programs.
VisAD version 1, implemented in C, solved this
problem by defining its own programming
language based on the data model. However, this
private language was not popular with users.
VisAD version 2, implemented in Java, solved this
problem by defining a library accessible from
ordinary Java programs. However, this does not
integrate access to the VisAD data model with
ordinary Java syntax of operations on data.
Rather, all access is via library method calls.

Now we have integrated the Python
programming language with VisAD in order to
provide users with a simple scripting language
interface to the VisAD library, and have been able
to integrate access to VisAD metadata with
Python syntax. We have integrated Python with
VisAD via Jython, which is a Java implementation
of Python that enables access to any Java objects
and methods from Python. Jython provides a set
of method signatures that can be implemented by
any Java object to define the meaning of Python
syntax such as +, -, * and / for arithmetical
operations, and [.] for array access.
Implementations of this syntax can include implicit
access to metadata. Unit conversions, coordinate
transforms and resamplings can all be done
implicitly during arithmetical operations. Given two
latitude values, lat1 in degrees and lat2 in radians,
the implementation of + in "lat1 + lat2" converts
the lat2 value to degrees before adding the two
values.

Although images and grids are Java
objects, implementations of appropriate Jython
methods allow them to be accessed using Python
array syntax. Thus the pixels of an earth image
can be accessed with the syntax image[i] where i
is an integer. Furthermore, (latitude, longitude)
pairs are objects. If the variable lat_lon references
such an object, the earth image can also be
accessed by the syntax image[lat_lon]. This
syntax can be used to write the Python program:

area = load("AREA2001")
map = load("OUTLSUPW")
i = 100
print "area = ", area[map[i]], " at ", map[i]

The first two lines of this program read McIDAS
image and map files into the variables area and
map. The third sets the variable i to 100, and the
fourth prints something like:

area = (78.12268) at (53.75, -9.5)

The popular Matlab and IDL scripting
languages allow arithmetical operations on arrays,
and scientists use this to work with entire images
represented by arrays of pixel values. That is,
given two arrays of pixels referenced by image1
and image2, they can be added by the syntax:

image3 = image1 + image2

In Matlab and IDL, these are just arrays of pixel
values without any associated units or earth
navigation. So if the images have different units or
earth projections, the system cannot adjust for
these differences. Rather, it is the responsibility of
the programmer to explicitly manage units and
earth projections. But for the same addition of
images in a Python script using VisAD, units will
be converted before the addition if image1 and
image2 use different units, and a coordinate
transform and/or resampling will be applied
implicitly if the two images have different earth
projections.

3. CONCLUSION

A current goal of the VisAD system is to
combine:

1. A scripting language in the style of Matlab and
IDL for interactive analysis.

2. Displays that overlay data from multiple
sources geographically and temporally, in the
style of McIDAS.

3. 3-D displays of model data in the style of
Vis5D, plus an easy ability to define novel 3-D
displays for new types of data.

4. Remote collaboration in the style of VisitView.

Combining the capabilities of these systems into a
single system will be useful to environmental
scientists. The integration of science metadata
into Python syntax is important for combining the
first two items on this list, the capabilities of
Matlab/IDL and McIDAS.

4. REFERENCES

Hibbard, W., C. Dyer and B. Paul, 1992; Display of
scientific data structures for algorithm
visualization. Proc. Visualization ’92, Boston,
IEEE, 139-146.

Hibbard, W., 1995; Visualizing Scientific
Computations: A System based on Lattice-
Structured Data and Display Models. PhD
Thesis. Univ. of Wisc. Comp. Sci. Dept. Tech.
Report #1226.

