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1. INTRODUCTION 

An observational operator and its adjoint has been 
created that is suitable for use within variational data 
assimilation using new 6 and 10 GHz passive 
microwave satellite observations. The new operator will 
allow soil moisture initialization to be performed using 
current and future satellite data sets (e.g., NASA 
AMSR, DoD WindSat, and the NPOESS CMIS). Five 
primary control variables are used within the operator, 
and explicitly includes surface soil moisture as one of 
the control variables. This operator and its adjoint will 
be used to perform Land Surface Model (LSM) data 
assimilation experiments to better determine important 
NWP surface characteristics. The operator is being 
incorporated into a 4DVAR system at CSU/CIRA. 
Current observational operator results and numerical 
simulations are presented. 

2. MWLSM Observational Operator 

The observational operator is based on the 
microwave land surface model (MWLSM) used in the 
NASA AMSR land surface algorithms (Njoku 1999; 
Njoku and Li, 1999). The model was initially created 
and validated using SMMR data and is currently under 
going extensive calibration and validation in several 
AMSR-related field experiments (NASA 2000; SMEX02 
2002). Some extensions are made for improved 
calibration and experimental use within the 4DVAR data 
assimilation context. In particular, the land surface 
temperatures are decomposed into soil surface and 
vegetation canopy temperatures, and a frequency-
dependent vegetation parameterization is used. A 
thorough perturbation scale-factor analysis of the 
observational operator was performed. This facilitated 
the numerical adjoint tests of the observational 
operator, since it uses a mix of complex and real 
number spaces. Those analysis details have been 
omitted from this paper. 

3. ADJOINT SENSITIVITY STUDIES 

Of particular importance to the soil moisture 
retrieval problem, is the need for an understanding of 
which state variables are driving the particular solution. 
We hope to demonstrate the utility of the constructed 
adjoint and the variational approach for answering this 
question. 

A traditional univariant sensitivity analysis is 
performed to create a reference frame for the reader. 
The univariant sensitivity analysis is performed with 
respect to a single variable, soil moisture. In Figure 1 
results are presented from a) the forward model at the 
base state as a function of soil moisture, and b) the 
corresponding univariant soil moisture responses using 
nominal first guess errors. The results are as expected, 
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Figure 1. Univariate MWLSM a) forward model results, 
and b) responses with respect to nominal perturbations 
in the soil moisture control variable for base state 
conditions. The soil moisture variable is the only 
variable that is adjusted. 
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with the brightness temperatures decreasing with 
increasing soil moisture values (Figure 1a). The vertical 
polarization brightness temperatures are greater than 
the horizontal polarization values due to Fresnel 
reflection behaviors at the surface dielectric 
discontinuity. The 6.9 GHz results show lower 
brightness temperatures than at 10.7 GHz. This is due 
to the larger dielectric constant of water at lower 
frequencies. Imbedded within Figure 1 are also the 
vegetation and microwave surface roughness effects 
appropriate for conditions at the nominal base state. 
The MWLSM response as a function of soil moisture 
(Figure 1b) is simply the derivative of the brightness 
temperature results (Figure 1a) with respect to the soil 
moisture variable. These results more visibly 
demonstrate the relative strength of the soil moisture 
signal for each sensor channel. 

Multivariate sensitivities are performed by adjusting 
the state vector across a wide range of conditions 
simultaneously. Many permutations of control variable 
combinations are now straightforward to analyze with 
the constructed observational operator. For the 
multivariate analysis example, a multidimensional state 
vector is used that incrementally progresses between 
the values (η = 0.05, WC = 0.0 kg m-2, h = 0.0, 
Teff = 273 K, TC = 273 K) and (η = 0.45, WC = 1.5 kg m-

2, h = 1.0, Teff = 320 K, TC = 320 K) at uniformly spaced 
intervals (Figure 3), where η is the volumetric soil 
moisture, WC is the vegetation canopy water content, 
h is the microwave surface roughness parameter, Teff is 
the effective bare-soil temperature, and TC is the 
vegetation canopy temperature. This multidimensional 
vector is simply a positive bias from the minimum state 
vector values along a multidimensional diagonal toward 
the maximum state vector values. This is one example 
out of numerous other possible multidimensional state 
traversals. This example was selected to demonstrate a 
broad range of conditions. It does not represent an 
expectation of system performance in the real world 
since the climatological probability distribution of the 
multidimensional state vector is poorly known at this 
time. 

The forward model and its associated response 
(Figure 3) are calculated in the same manner as the 
univariate results (Figure 1). Since the abscissa is 
traversing a diagonal along the entire input range for all 
control variables and just projected onto the soil 
moisture variable dimension, the multivariate results 
are markedly different from the univariate results. Most 
notable is the increase of brightness temperature with 
increasing soil moisture. As will be shown, this is due to 
a complex interaction of various physical phenomena, 
but certainly most obvious would be the effect of 
increasing the effective soil temperature and vegetation 
canopy temperature as soil moisture is increased. It can 
also be seen that the horizontal polarization frequency 
differences can increase with increasing abscissa 
values, and then reverse behavior as the soil moisture 
signal weakens at wet soil conditions. 

Similar to the previous univariate analysis 
(Figure 1b), the multivariate MWLSM response is of 
most interest in the context of the optimal estimation 
problem. Results (Figure 3b) show a complex 
interaction between radiometric channels. At dry soil 
conditions (η = 0.05) the response is similar to previous 
results at (η = 0.05) (Figure 1b), however, the response 
at horizontal polarization is slightly reduced due to 
enhanced vegetation water content effects for sparse 
vegetation conditions (this will be explicitly shown in the 
following analysis). Generally, however, the multivariate 
responses exhibit crossover conditions where the 
response switches from negative to positive. This 
introduces “balanced” conditions where the model 
produces no response due to the initial guess 
perturbation. This is due to counter-acting model 
variables. For example, the soil moisture and vegetation 
water content variables tend to act in an opposite 
manner. With increasing soil moisture, brightness 
temperatures decrease, while with increasing vegetation 
water content brightness temperatures increase. This is 
the nature of the physics of the system. This creates 
opposing or competing responses within the MWLSM 
system. In fact, each radiometric channel exhibits a 
cross-over condition for the particular multidimensional 
model state vector. This is certainly not always the 
case, but serves to elucidate the utility of the adjoint 
sensitivity analysis that follows. 

One of the characteristics of the adjoint operator is 
its ability to transform the analysis space from 
radiometric space to model vector space. This is 
demonstrated by the relative component strengths 
shown in Figure 2. The relative component strength is 
given by 
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where < >i denotes the inner product component of the 
ith model vector element (e.g., the i = 1 component 
would correspond to the soil moisture variable, where L 
is the model perturbation operator, and x΄ is the model 
state perturbation vector. This is then normalized to the 
full inner product. Thus, the relative magnitude of the 
model vector element to the other model vector 
elements can be calculated. It should be pointed out 
that a full adjoint sensitivity analysis would have to also 
include the background error covariance interactions as 
well as model and observation error covariances. 
Therefore, the results presented are a necessarily 
simplified form of a more complete analysis. Such 
future work is planned. However, the relative 
component strength results (Figure 2) are very useful. 
The RCS of the soil moisture variable is the largest 
system signal, with large positive contributions for dry 
soil conditions, and smaller, yet sizable, negative 
contributions at more moist soil moisture conditions. 
The remaining control variables act as masking 
phenomena and oppose the RCS of the soil moisture 
variable. Only for a small interval between 



 

0.13 < η < 0.18 do any of the other control variables 
assist the RCS of the soil moisture variable. 

For this particular multidimensional vector 
traversal, the primary masking variables are vegetation 
water content and the microwave surface roughness 
parameter. However, the remaining control variables 
show RCS > 20 % at some point along the model state 
traversal, so their effects are not negligible for these 
conditions. This also supports the control variable 
selection, in that if a control variable were negligible it 
would exhibit small RCS values. Perhaps the most 
powerful aspect of such an analysis is that the 
discussion of model impacts are now moved from 
discussions in terms of radiometric vector space to the 
model vector space. It is much more natural to speak of 
quantities as related to the physical model phenomena 
than in radiometric space where cause and effect are 
much more difficult to assign. The adjoint sensitivity 
analysis is a quick and efficient approach and thus 
lends itself more easily to the optimal estimation 
problem. 

4. CONCLUSIONS 

The MWLSM observational operator is an 
extension of the AMSR land surface forward model 
made to be more suitable for NWP land surface model 
data assimilation use. Thru various perturbation studies 
and numerical tests, a valid MWLSM adjoint was 
constructed and numerically tested. This work 
demonstrates the use of the relative component 
strength as a measure of multidimensional influence on 
the minimization direction as diagnosed via the adjoint 
operator, LT. 

It is also shown that certain masking conditions 
can obscure the soil moisture signal. The variational 
approach explicitly identifies the physical conditions in 
which the counter-acting phenomena are present and 
can predetermine the influence of such conditions using 
a straightforward multidimensional analysis. This 
capability is exploited within variational optimization 
methods. 

Future work will employ the MWLSM OO within the 
CIRA RAMDAS 4DVAR system for experiments using 
observational data sets. Upon practical application to a 
bio-physical system (e.g., corn) the implicit temporal 
filtering of slowly changing control variables within a 4D 
data assimilation system should allow for an optimal 
estimate for some of the more elusive control variable 
quantities (e.g., h, WC) in addition to the primary target 
variable, soil moisture. This will be the endeavor of 
future research activities. 
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Figure 2. Same as Figure 3, except that results are for 
the relative component strength of the MWLSM 
operator due to a nominal perturbation of all control 
variables as computed using the adjoint operator. 
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Figure 3. Multivariate MWLSM a) forward model 
results, and b) responses with respect to nominal 
perturbations in all control variables and presented as a 
projection onto the soil moisture dimension. All control 
variables are simultaneously adjusted through their 
entire variable range. Thus, the abscissa represents a 
multidimensional state vector incrementally progressing 
between the values (η = 0.05, WC = 0.0 kg m-2, 
h = 0.0, Teff = 273 K, TC = 273 K) and (η = 0.45, 
WC = 1.5 kg m-2, h = 1.0, Teff = 320 K, TC = 320 K) at 
uniformly spaced intervals. 
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