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1. INTRODUCTION 

A computationally efficient discrete Backus-Gilbert 
(BG) method is derived (Stephens and Jones, 2002) 
that is appropriate for resolution-matching applications 
using over-sampled data. The method in its current 
form is restricted to a resolution-only minimization 
constraint, but in the future could be extended to use a 
simultaneous noise minimization constraint using a 
generalized singular value decomposition (SVD) 
approach. In 1-D simulated comparisons, the discrete 
BG (DBG) method is shown to be 250% more efficient 
than the original BG method while maintaining similar 
accuracies. In addition, a SVD approximation increases 
the computational efficiencies an additional 43% to 
106%, depending upon the scene. The ability to 
recompute the modified BG coefficients dynamically at 
lower computational cost make this work applicable 
toward applications in which noise may vary, or where 
data observations are not available consistently (e.g., in 
RFI contaminated environments). 

2. BACKGROUND AND MOTIVATION 

The Backus-Gilbert method (Backus and Gilbert, 
1970) has been employed by various authors to 
spatially co-register and invert various data sets while 
accounting for different spatial and error propagation 
behaviors. The original work of BG provides a rigorous 
mathematical basis for the inversion of inaccurate data. 
Later Stogryn (1976) applied it to the specific problem 
of microwave footprint matching, and further developed 
concepts from BG that are the basis of most BG 
footprint-matching applications today. A key feature of 
the BG method is that it can be used effectively to trade 
instrument noise for spatial resolution and vice versa. 
This flexibility is a fundamental strength of the BG 
approach. 

The mathematics community has made progress in 
the understanding of regularization methods such as 
the Backus-Gilbert approach. In particular, this paper 
builds upon the work of Stogryn (1976) and Poe (1990) 
and that of Hansen (1994). 

Stogryn (1976) introduces an optional additional 
minimization constraint on the noise amplification so 
that resolution and noise are both minimized 
simultaneously to various degrees by varying a 
parameter, γ. For this work, the case where γ = 1 is 
used to simplify the intercomparison analysis. 
Physically this corresponds to a pure resolution 
minimization constraint. The inclusion of γ ≠ 1 would 
require the use of a generalized SVD (GSVD) 
optimization approach (Hansen, 1994), since several 
key matrices are no longer purely diagonal, and 
become interdependent on the gain function. Utilization 
of a GSVD approach is beyond the current scope of this 
work. Thus, the practical applications of the DBG 
methodology as described should only be used where 
sufficient data overlap occurs (i.e., where noise 
amplification is not a serious concern (Bennartz, 2000)). 

This work has practical implications for the 
utilization of BG methods within the earth sciences 
community. For example, a long-standing problem with 
the application of BG to earth science remote sensing 
has been the computational expense of calculating the 
coefficients necessary for the method (Galantowicz and 
England, 1991). Current applications typically assume 
that the sensor and noise contributions are stable and 
that the coefficients can be assumed static. However, in 
an era of increasing RFI, the relatively benign 
radiometric operating conditions that the remote 
sensing community has enjoyed may be part of a 
passing era. Thus, methods that are more dynamic are 
needed to cope with such possible changes that 
threaten the performance of more traditional BG 
implementations. In addition, certain computationally 
intensive applications involving remote sensing may 
impose demanding computational restrictions that 
traditional BG methods are not able to accommodate. 
In this vein, a new DBG method is created which is 
computationally more efficient, and operationally 
flexible in its configuration. In the new method, it will be 
shown that computational performance can be 
dynamically traded for method accuracy. This allows 
the method to expend CPU cycles where the spatial 
data analysis is most critical and vice versa. 
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In particular, the DBG method explicitly specifies 
the integration approach, which facilitates several 
optimization techniques. This paper specifically 
addresses two optimizations: the diagonalization of 
several matrices following the Hansen integration 
approach, and the SVD approximation technique. It 
should be noted that the optimization improvements are 
compounding effects, in that the matrix diagonalization 
increases the computational performance by more than 
250% for some scenes, while the SVD performance 
gains are in addition to that increase in performance. 
Several other optimizations remain unexplored that 
could exploit the flexibility of the DBG integration form; 
these include adaptive grid methods, customized or 
dynamic quadrature rules, and other possibilities. 

3. DBG METHOD 

Hansen discretizes the BG method using the 
simple rule (Hansen, 1994): 
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where N is the number of discrete integration intervals, 
and wk are the integration weights. This allows the BG 
method to be expressed as a product of vectors and 
matrices. By combining the Hansen discretization with 
the Stogryn minimization constraints and conditions, a 
modified set of coefficients, ai, can be defined. The 
modified coefficients can be written in matrix form as 
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where subcomponents of the matrix M are now 
diagonalized, resulting in a more computationally-
efficient and flexible form. The reader is referred to 
Stephens and Jones (2002) for complete details of the 
DBG derivation. 

4. DBG RESULTS 

A series of simulations were performed in which the 
number of integration intervals used within the DBG 
method, N, was modified to determine the 
computational cost of the method versus the method’s 
RMS accuracy. For this numerical experiment, the 
number of measures, M, is set to 100. The number of 
integration points, N, is adjustable. The Stogryn method 
is used as a control. 

Figure 1 presents results for a uniform scene with 
random noise imposed. The DBG method RMS values 
are generally lower than the Stogryn RMS values. This 
is likely due to a more optimal integration pattern for the 
random distribution, since the DBG integration is evenly 
spaced. The numerically optimized integration weights 
used in the Stogryn method may also be amplifying the 
effect of the various random patterns within the data set 
series. The trend in the DBG results (Figure 1) is toward 

lower RMS values with larger N. This corresponds to 
improved integration accuracy with larger N. The 
relative CPU consumption for the DBG method 
increases with N as ~N 2 . The computational costs 
between the methods are approximately equivalent at 
N ≅ 220. These results show that significant 
computational improvements can be made by reducing 
the number of DBG integration intervals, such that at 
N =100, the relative DBG computational efficiencies are 
250%. This is a result of the matrix diagonalization in 
the DBG equation form. 

5. SVD ANALYSIS AND RESULTS 

The SVD of a general real M × N matrix allows the 
target matrix to be separated into left and right singular 
vectors with the definition of appropriate singular 
values. The practical consequence of this is that it 
allows the matrix to be handled via summations, and 
additional approximations become available to increase 
the overall performance of the method. It should be 
noted that the SVD computational savings are in 
addition to the computational savings that result from 
the inherent form of the DBG method over traditional 
methods. The SVD form of the DBG is an explicit 
optimization technique that specifically exploits the DBG 
diagonal matrix form. 

The summations in the SVD of the DBG method 
can be truncated at any desired point. Figure 2 shows a 
sequence of results in which additional terms are 
progressively added to the SVD summation, for the 
case where M = 100. It can be seen that the effect is 
similar to that of a Fourier series. The first few terms 
give the general average and scaling of the spatial 
features, and additional terms refine the spatial 
structure of the results. 

The RMS performances of the SVD results are also 
calculated for three simulated truth scenes with random 
noise of 5 K imposed (a uniform scene, a step function 
scene, and a sine wave scene). The results (Table 1) 
are defined as ratios in which the SVD DBG RMS 
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Figure 1. The RMS performance (K) for the uniform 
scene simulations for the DBG method (DBG) and the 
Stogryn method versus the number of integration 
points, N. Also shown is the relative DBG computational 
efficiency (%) as compared to the Stogryn 
computational costs. 



 

results are normalized relative to the non-SVD DBG 
RMS results. Corresponding standard deviations are 
also calculated. RMS ratio results less than one indicate 
an improvement using the SVD approach. The 
computational cost ratio is defined similarly, with the 
cost ratio being defined as the SVD cost relative to the 
non-SVD cost. The computational costs are 
independent of the specific scene. These results show 
that the RMS errors decrease as the number of 
summation terms is increased. Table 1 also shows a 
linear relationship between computational costs and the 
number of summation terms, which is expected. In 
practice, 20% of the terms generally gave sufficient 
structure, low RMS values, as well as minimizing 
computational costs for the particular simulated scenes 
explored here. However, it should be pointed out that 
performance was dependent on the particular scene. 
For the uniform scene, all SVD RMS results were 
significantly improved, with RMS values less than 50% 
of the non-SVD RMS results, while the step function 
scene results were only marginally improved. The sine 
wave scene was the most difficult scene for the SVD 
approach and resulted in errors that were 30% greater 
than the non-SVD results. The choice of where to 
truncate the SVD series will in general be dependent on 
the specific application and its associated error 
tolerance requirements. 

6. CONCLUSIONS 

The flexibility of the DBG method allows it to trade 
computational cost for accuracy, thus lending itself to 
several challenging research application areas. In 
particular, the use of a more flexible method would 
serve well in applications where the BG coefficients 
need to be routinely recalculated, depending on 
conditions, such as in a RFI contaminated environment. 
The flexibility of the DBG method also allowed for 
several of the optimizations to be performed in a rather 
straightforward manner. Many additional optimizations 
are likely possible. 

Future work will investigate additional 
computational enhancements and test the scope and 
validity of those assumptions. The method will also be 
used in future cross-sensor data fusion application work 
(Jones and Vonder Haar, 2002). Research applications 
in which multi-frequency spatial resolution behaviors 
are important [e.g., in use with variational satellite data 
assimilation methods (Jones et al., 2003), and satellite 
sounding applications (McKague et al., 2003)] will also 
benefit from the DBG method improvements. 
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TABLE 1 

SVD DBG RMS Performance Relative to the Non-SVD DBG RMS Performance 

 Uniform Scene Step Scene Sine Scene Relative Cost 

%M RMS σ RMS σ RMS σ AVERAGE σ 

100 0.50 0.09 0.991 0.003 1.30 0.03 0.699 0.009 

50 0.47 0.05 0.993 0.004 1.31 0.03 0.580 0.006 

20 0.43 0.07 0.992 0.004 1.31 0.03 0.519 0.010 

10 0.43 0.07 1.062 0.004 1.46 0.03 0.486 0.002 
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Figure 2. The summations in the SVD of the DBG method can be truncated at any desired point with reduced 
fidelity. A sequence of results are shown in which additional terms are progressively added to the SVD summation, 
where M = 100, and a) has 1% of M terms, b) 3%, c) 5%, d) 10%, e) 15%, and f) 100%. 
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