Modifications to AERMOD

Alan J. Cimorelli
US EPA Region III
May 21, 2002
Revisions for Promulgation

- Include PRIME in AERMOD
- Revised terrain treatment (domain dependency removed)
- Structural enhancements
 - Allocatable arrays
 - EVENTS processing
 - Create TOXX model input file (binary w/ threshold)
 - Variable Emissions (by: hour, month, season, u)
 - Multi-year processing for PM-10 (6th high in 5 years)
- Meander included for all conditions
- AERMET Formats:
 - Surface: SCRAM, CD-144, SAMSON, HUSWO, TD-3503
 - Upper Air: TD-6201 & FSL
- AERMAP: convert NAD27 to NAD83
Future Enhancements:

- Deposition
- Estimating u_*, η_*, and L in stable conditions without on-site cloud cover

 Data needs: 2 levels of T & 1 level of u

- AERSCREEN

- Conversion of NO to NO$_2$ (privately funded)

 - Ozone Limiting Method
 - Plume Volume Molar Ratio Method
Revised Terrain Treatment

- Response to public comment: Concentration depends on the selection of the domain
- Revised the “terrain height scale” h_c:
 - h_c is the terrain-influence height for a specific receptor used to compute AERMOD’s receptor specific critical dividing streamline height
 - Original formulation - h_c depends on:
 - Height of terrain feature
 - Distance from receptor
 - Highest terrain in the domain
 - Revision - h_c depends on:
 - Plume height
 - Receptor height
 - Height of local terrain
AERSCREEN

- **AERSCREEN Workgroup: States & EPA**
- **Developmental Goals:**
 - Replacement for SCREEN3
 - 1-hour maximum and scaled to other averaging times
 - Incorporate building effect and terrain
 - Build to be interactive
 - Incorporate as option in AERMOD
- **Current Tasks:**
 - Development screening meteorology - CTSCREEN like matrix
 (draft this summer)
 - Develop worse case stack-to-building relationships
 - Develop distance dependent max conc. Function
 - Construct temporal scaling ratios
Finding h_c

Receptor
$(x_\text{r}, y_\text{r}, z_\text{r})$

Terrain Pt.
$(x_\text{t}, y_\text{t}, z_\text{t})$

Max
h_{eff}

Domain of Interest

Effective Terrain

$\tau_\text{o}/10$
Finding h_c - New Approach

$$h_c = \min \left[(h_e + z_r) ; \ (\text{local terrain max}) \right]$$

- Relative to z_r the plume material that reaches h_c is terrain following.

- In example: 70% of plume material reaches h_{c1}; 10% reaches h_{c2}; & 0% reaches h_{c3}

Therefore:

$$f_1 = \frac{1}{2} (1 + .3) = .65$$
$$f_2 = \frac{1}{2} (1 + .9) = .95$$
$$f_3 = \frac{1}{2} (1 + 1) = 1$$
Prime Concentration Calculations

Cavity Conc: \(C_c = f(Q_c, H_c, W_B, u_H) \)

Far-Wake Conc: \(C_{fw} = C_{cv} + C_w \)

\(C_{cv} \) => \(Q_c \) volume source

\(C_w = f(Q_w, \text{enhanced PG } \rho_y, \rho_z) \)

Beyond Wake Conc: \(C_{bw} \) => PG virtual point source
PRIME in AERMOD

- **Approach:**
 - Within the cavity & wake regions
 - Use PRIME algorithms exclusively
 - Use improved AERMOD Meteorology
 - Beyond the far wake smoothly transition back to AERMOD

- **Implementation:**
 - Run both PRIME & AERMOD and blend results
 \[C_T = \chi C_{\text{PRIME}} + (1- \chi) C_{\text{AERMOD}} \]
 - \(\chi = 1 \) for all receptors in the wake (i.e. PRIME only)
 - Transition to AERMOD in far-field:
 \[\gamma = f\left(e^{-x^2} e^{-y^2} e^{-z^2}, \text{cavity / wake structure}\right) \]

- Acceptable performance
AERMOD – PRIME (cont.)

- Implementation:
 - Blend AERMOD & PRIME

\[\chi_{Total} = \gamma \chi_{PRIME} + (1 - \gamma) \chi_{AERMOD} \]

where:

\[\gamma = \exp \left(-\frac{(x - \sigma_{xg})^2}{2\sigma_{xg}^2} \right) \exp \left(-\frac{(y - \sigma_{yg})^2}{2\sigma_{yg}^2} \right) \exp \left(-\frac{(z - \sigma_{zg})^2}{2\sigma_{zg}^2} \right) \]

and:

- \(x \equiv \text{downwind dist. from upwind edge of bldg to receptor} \)
- \(y \equiv \text{lateral dist. of receptor from bldg centerline} \)
- \(z \equiv \text{receptor height above ground} \)
- \(\sigma_{xg} \equiv 15R \equiv \text{longitudinal dimension of wake} \)
- \(\sigma_{yg} \equiv Bldg \text{ centerline to lateral edge of wake} \)
- \(\sigma_{zg} \equiv \text{Height of wake at receptor location} \)