Implementation and Evaluation of PRIME in AERMOD – Panel Presentation

Roger W. Brode Pacific Environmental Services, Inc. (a MACTEC Company) Research Triangle Park, NC

12th Joint AMS/A&WMA Conference on Applications of Air Pollution Meteorology Norfolk, Virginia May 2002

Introduction

- AERMOD proposed for Guideline at 7th Modeling Conference in June 2000
- ISC-PRIME also proposed for cases where downwash is important
- PRIME incorporated into AERMOD in response to public comments
- Developmental and final evaluation of PRIME completed

Purpose of Presentation

- Describe implementation of PRIME in AERMOD
- Present results of evaluation of AERMOD with PRIME

Guiding Principle

To keep PRIME algorithms as intact as possible, while maintaining improved AERMOD meteorology

Implementation Issues

- PRIME includes gridded meteorology profiles that differ from AERMOD
- PRIME includes ambient turbulence intensities based on PG stability class
- PRIME uses Gaussian vertical distribution for unstable conditions; AERMOD includes non-Gaussian PDF
- Application of PRIME to AERMOD's three –plume approach in CBL

Implementation Decisions

- Incorporate AERMOD meteorology profiles into PRIME
- Define ambient turbulence intensities for PRIME based on AERMOD turbulence and wind profiles
- Use PRIME estimates within wake region and transition to AERMOD estimates beyond wake region

Implementation Decisions (cont.)

Lateral and vertical extent of wake region are defined internally by PRIME algorithm based on building geometry

 Longitudinal extent of wake (for purposes of PRIME to AERMOD transition) defined as larger of 15R and distance where transition from wake to ambient turbulence occurs

Implementation Decisions (cont.)

- PRIME estimate is Gaussian for all conditions
- AERMOD estimate includes three plume approach with non-Gaussian PDF for CBL, and does not include downwash
- Use exponential transition function (() to weight PRIME and AERMOD components

Implementation Decisions (cont.)

Criterion for whether plume "escapes" wake was modified based on results of developmental evaluation

 PRIME uses 45 degrees for critical plume trajectory angle at top of wake (N) to determine if wake affects plume

 AERMOD uses 20 degrees for N based on developmental evaluation results

Weighting Function (()

 $CHI_{TOTAL} = (CHI_{PRIME} + (1-()CHI_{AERMOD}))$

(= 1 inside wake region; beyond wake

Weighting Function (cont.)

where

- x = downwind distance of receptor from upwind edge of the building;
- y = lateral distance of receptor from building centerline;
- z = receptor height above stack base, including terrain and flagpole;
- F_{xg} = max(15R, distance to transition from wake to ambient turbulence);
- F_{yg} = lateral distance from building centerline to lateral edge of the wake at receptor location; and
- F_{zg} = height of the wake at the receptor location

Developmental Data Bases

- Bowline Point Power Station database, Hudson River valley (half year of data)
- Millstone Nuclear Power Station tracer database, coastal Connecticut
- Duane Arnold Energy Center (DAEC) tracer database, rural Iowa
- Alaska North Slope tracer database, near Prudhoe Bay, Alaska

Bowline Point Study Area

PES A MACTEC COMPANY

Bowline 1-hr Q-Q Plot (i) - 87m Stack

Bowline 3-hr Q-Q Plot (i) - 87m Stack

Millstone Study Area

Millstone Freon 1-hr Q-Q Plot (i /Q) - 29m Stack

Millstone SF₆ 1-hr Q-Q Plot (i /Q) - 48m Stack

DAEC Study Area

DAEC SF₆ 1-hr Q-Q Plot (i /Q) - 46m Stack

DAEC SF₆ 1-hr Q-Q Plot (i /Q) - 24m Stack

DAEC SF₆ 1-hr Q-Q Plot (i /Q) - 1m Stack

Alaska North Slope Study Area

Fig. 1. Map of the Prudhoe Bay oilfield.

Alaska North Slope 1-hr Q-Q Plot (i /Q) - 39m Stack

Final Evaluation Databases

- Bowline Point Power Station database, Hudson River Valley (full year of data)
- AGA tracer databases in Texas and Kansas
- EOCR tracer database for Test Reactor Building in Idaho
- Wind tunnel database for Lee Power Plant

Bowline SO₂ Model Comparison Measures With 95% Confidence Intervals

Model Comparison Measure (MCM)

AGA 1-hr Q-Q Plot (i /Q)

AGA

Difference in Absolute Fractional Bias

EOCR 1-hr Q-Q Plot (i /Q)

EOCR Power Plant

Difference in Absolute Fractional Bias

Lee Wind Tunnel 1-hr Q-Q Plot (i /Q)

Lee Power Plant All Loads and Units Difference in Absolute Fractional Bias

Summary of Results

Overall results for AERMOD with PRIME similar to or better than results for ISC-PRIME

