
7.8 DEVELOPMENT OF A JAVA-BASED METEOROLOGICAL WORKSTATION BY GERMAN
METEOROLOGICAL SERVICE AND PARTNERS

Gerhard Eymann1

Deutscher Wetterdienst, Offenbach, Germany

1 Corresponding author address: Gerhard Eymann, Deutscher Wetterdienst, Kaiserleistr. 44, 63067 Offenbach,
Germany; email: Gerhard.Eymann@dwd.de

1. INTRODUCTION

German Weather Service DWD and German
Military Geophysical Service decided two years ago
to develop a new meteorological workstation from
scratch [Koppert, 2002]. During last year, Meteo-
Swiss and Danish Meteorological Institue (DMI)
joined the project. The aim is is to replace several
older systems at the institutes that have particular
tasks and have become difficult to maintain and
update. New demands from meteorologists could
not be integrated in the legacy systems without very
large effort. Required new functionality is e.g. 3-D
visualization, advanced analysis capabilities and
improved geography.

The decision for Java as programminmg
language and development platform was made
since it meets essential criteria like independence of
platform and operating system. It offers 2-D and 3-D
graphics and additional APIs for GUIs, data base
access and other functionality. The performance
issue was evaluated before in a pilot project and is
analysed during all phases of development. It
turned out that this is not a problem, however many
things must be considered in the design and during
coding. Even numerical calculatuions are now in
pure Java since we found they can outperform C++
when carefully optimized.

The design follows an object-oriented
approach utilizing formal methods, in particular
UML. Primary aim is a 3-tier system (client, server,
access layer), a web service will be added later.
The architecture of the client uses a scheme that
allows the independent development and
integration of individual application layers, e.g. for
observation data, gridded data or geography. This
facilitates every participating partner to build
individual applications.

2. SYSTEM ARCHITECTURE OVERVIEW

The main principles of the architecture (Fig. 1) are:
• open and scalable multi-tier architecture,
• modularization by seperation in

components,
• high degree and universal way of

configurability,
• well defined interfaces and shielding of

particular access to data.

In addition, we defined essential quality
criteria as performance, stability and ease of
maintenance. We take particular, time and cost-
intensive measures to achieve and control this.

Fig. 1: NinJo System Architecture (left: temporarily
used MAP system, right: future developments)

Access to observation data is provided
temporarily by the data base of the current MAP
system. This will be replaced by the NinJo Server in
the beginning of 2003. Client and Server
communicate via CORBA (Iona ORBacus). This
was preferred over self-developped low-level
communication, because the ORB has many built-in
services like load-balancing and security
mechanisms. The two components at the right,
Web-Server and -Client, have been postponed to
later project phases.

The Batch Production Component, which is
in the conceptual phase, acts virtually as a client
without any interactivity and screen rendering
capabilitiy. It produces graphical products like
charts and diagrams off-line. For the output, a
PostScript and FLASH renderer were developped,
another option is SVG (Scalable Vector Graphics).

The configuration of each component is
described by XML. At the back end, the system has
several interfaces to external systems. They
comprise of file systems with standard
meteorological formats, a RDBMS and a decoding
system that provides observation data. The access
from the client is encapsuled through an access
layer, the application layer does not have to deal
with particular formats. Observation and forecast
data will be handled as files in standard
meteorological formats, the RDBMS is to provide

climatological data. Time-independent bulk data,
e.g. geographic vector and raster data, will by
default be stored at the client.

3. FRAMEWORK COMPONENTS
In addition to the seperation in tiers, there is

a distinction in framework and application-specific
components. Framework components exist for the
server and client as well, they comprise e.g.:

• configuration framework,
• internationalization,
• data communication,
• data servers (seperate for gridded data,

point data, image data).
The functionality of the first component is

covered by an own implementation, since we found
some deficiencies in other API’s like JAXB. The
configuration module represents a complete and
comprehensive description of the client and server
configuration, including batch processing and
diagram visualization.

Client framework components provide the
necessary services for application layers. The Java
built-in feature of internationalization gives an
elegant way of separating language specific
information (strings, units) from the code. We will
support 5 languages from the beginning (english,
german, danish, french, italian). Some framework
components affect the client only, e.g.:

• layer container and PAC client control,
• graphics visualization library,
• graphics rendering library (GOF),
• raster imaging,
• graphical user interface (GUI).

The first acronym stands for an OO design
pattern that we selected and turned out to be very
useful: presentation, abstraction, control. This
principle is the key to the development of individual
application layers that can be attached to the
system independently.

For the visualization, a self-developped
graphics API called GOF (Graphics Object Factory)
abstracts from the underlying Java-2d, Java-3d or
the OpenGL binding GL4Java. The GOF uses
internally the concept of a scenegraph, as it is
known from Java-3D. Preliminary results of
GL4Java are promising, concerning functionality,
memory ressources and performance.
Mathematical functions like isoline and -area
calculations are encapsuled in a utility library,
written in pure Java.

For the visualization of image or raster data,
Sun‘s Java add-on JAI (Java Advanced Imaging) is
used. It offers essential image processing and
visualization techniques, including tiled, multi-
resolution image handling. Geodetic transfor-
mations of image data are done with the aid of a
built-in warp function, where a coarse grid of points
is transformed exactly and intermediate areas
approximated by affine methods. Display of one of
the basic geographic raster data sets (GTOPO30

from USGS, horiz. resolution ~1 km) is achieved in
real-time on a state-of-the-art PC.

4. APPLICATION LAYERS

Fig. 2 illustrates the main components of
the client. It comprises several application layers,
which use the framework (GUI, GOF, configuration
etc.) simultaneously. Important demands to the
client design were scalability and independent
development and operation of application layers.
Each layer is able to manage and visualize its own
particular data, such as:

• point observation data,
• gridded data,
• satellite data,
• radar data,
• trajectories,
• geographical vector and raster data.

Fig. 2: Client Design (with some external
components in dark grey)

The PAC design pattern was chosen to solve
this problem. It is an extension of the MVC (Model,
View, Control) pattern and allows to have a well-
defined separation of essential system components.
Each application layer follows the MVC pattern,
while PAC is an hierachical collection of the
individual MVC’s.

The main components are the model, that
holds data and updates the view, the view, that gets
data from the model and visualizes them, and
control, that interacts with the GUI, the
configuration, deals with events (e.g. user input,
mouse), and has control over the two other
components.

The client consists of a tree of MVC-triples,
each one being a PAC agent. The agents are
grouped in a 3-step hierachy: a single top-level one
to control the whole system, a few intermediate
ones to control each window, and several bottom-
level agents for each application layer. Intermediate
agents also control additional windows for
diagrams.

5. RESULTS FROM PROTOTYPE

The GUI of the 2nd prototype from summer
2002 is illustrated in Fig. 3. A multi-window layout
similar to AWIPS was preferred by the users. The
number of secondary scenes can vary from none to
three. Main and secondary scene can be
interchanged by a mouse-click. Each scene may
display 2-D or 3-D data. Diagrams will appear in a
separate window.

The GUI layout is not settled yet, but shows
some elements we agreed to: on top a general
menu, a tool bar and an application specific menu.
An interactive legend and controls for time-
dependent adjustments are at the bottom.
Animation control and display is inherent to the
system.

Fig. 3: GUI of client prototype with main and 2
secondary scenes. Shown is the GeoVector and
GRID layer with temperature isoareas, in the lower
right 3-d data (digital elevation data with texture,
above cloud humidity level)

Fig. 4: main scene of trajectory layer. shown are
both forward (red) and backward (green)
trajectories. A tool-tip pops up at a selected
trajectory, circles indicate a particular time step.

Fig. 4 is an example of an independent
application layer by DMI. While the core layers are
developped by the NinJo team, more individual
layers will be developped for special purposes by
others.

The implementation of the system is done
step-wise with the release of two so-called
developing protoypes per year. These are

examined in detail by an evaluation group of
experts and a quality assurance team. Most of the
essential client framework components exist
already. At the moment, work is going on at the
server side and some framework modules like batch
production and internationalization. Much work
remains to de done for more application layers like
satellite and radar data, as well as for 3-D
visualization and diagrams.

6. REFERENCES
Koppert, H.-J.: 2002: A Java Based Meteorological
Workstation, 18th International Conference on
Interactive Information and Processing Systems for
Meteorology, Oceanography and Hydrography,
American Meteorological Society, p. 307 – 310

