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1. Introduction application of Artificial Neural Networks (ANN) to 
forecast future water levels and improve on the 
presently inadequate harmonic forecasts.  

 
Accurate water level forecasts are of vital 

importance along the Texas coast as the waterways of 
the northern Gulf of Mexico play a critical economic role 
for a number of industries including shipping, oil and 
gas, tourism, and fisheries.  The economic impact of 
these industries is not limited to the Gulf coast as for 
example more than 50% of the US tonnage reaching the 
US by waterways transits through the Gulf of Mexico.  In 
the study area the Corpus Christi (CC) estuary (see 
Figure 1) is home to the fifth largest US port by tonnage, 
the Port of Corpus Christi.  Astronomical forcing or tides 
are well tabulated; however water level changes along 
the Gulf coast are frequently dominated by 
meteorological factors whose impact is often greater 
than the tidal range itself (e.g. Cox et al. 2002a).  The 
National Oceanic and Atmospheric Administration 
(NOAA) stated that “presently published predictions do 
not meet working standards” when assessing the 
performance of current predictions, a parameter closely 
related to water levels, for regular weather conditions in 
Aransas Pass and CC Bay, both part of the study area 
(NOAA 1991, NOAA 1994).   

A comparison between harmonic forecasts and 
measured water levels is illustrated in Figure 2 for one 
of the TCOON stations of the study area, the Naval Air 
Station (NAS).  As can be observed, the difference 
between harmonic and measured water levels is 
frequently larger than the tidal range itself.  The water 
anomaly or difference between measured and 
harmonically forecasted water levels is presented in 
Figure 2b.  The anomaly regularly shifts from positive to 
negative by about half a meter during frontal passages 
in winter spring and fall or Julian Day (JD) 0-120 and JD 
280-365.  Figure 2c displays the squared wind speed or 
wind pseudostress for the same period.  The strong and 
shifting winds during frontal passages are well 
correlated with the water anomaly and wind is generally 
recognized as the main non-tidal forcing driving water 
level changes (Garvine 1985, NOAA 1991, NOAA 
1994).  The agreement between harmonic and 
measured water levels is typically much closer during 
the summer months with the exception of the passage 
of tropical storms.  In 1998 this was illustrated by 
tropical storm Frances, which affected water levels in 
CC Bay from JD 245 to JD 260.  Although the focus of 
this model is the forecast of water levels during frontal 
passages, data affected by tropical storms have not 
been removed and the performance of the model will be 
assessed during the passage of tropical storms. 

For more than ten years the Texas Coastal Ocean 
Observation Network (TCOON) has measured and 
archived water levels as well as other coastal variables 
that have been recorded in CC Bay and along the coast 
of Texas.  TCOON was constructed and operated by 
Texas A&M University-Corpus Christi (TAMUCC) 
Conrad Blucher Institute (CBI) Division of Nearshore 
Research (DNR).  The network presently consists of 42 
weather platforms from Brownsville to the Louisiana 
border (Michaud et al. 2001).  In addition to the TCOON 
stations, CBI-DNR manages another 18 data collection 
platforms.  The overall network provides real-time or 
near real-time coastal measurements such as water 
levels, wind speeds and wind directions, barometric 
pressures as well as other variables such as dissolved 
oxygen, salinity and wave climates depending on the 
station.  This abundance of archived measurements 
provides a unique opportunity to test data intensive 
modeling and forecasting techniques such as the 
  

 
 

 

Aquarium 
Nueces Bay 

Ingleside 
Corpus 

Christi Bay 

Port Aransas

Gulf of 
Mexico

Naval Air Station

Oso Bay Packery Channel 

* Corresponding author address: Philippe E. Tissot, 
Texas A&M University-Corpus Christi, Conrad Blucher 
Institute, 6300 Ocean Drive, Corpus Christi, TX 78412; 
e-mail: ptissot@cbi.tamucc.edu. 

 Bob Hall Pier

F
th
Port of Corpus Christi
igure 1.  The Corpus Christi estuary with the location of 
e TCOON stations used for this study.

mailto:ptissot@cbi.tamucc.edu


0 50 100 150 200 250 300 350

0

1

2
W

at
er

 L
ev

el
(m

)

0 50 100 150 200 250 300 350
-0.5

0

0.5

1

W
at

er
 A

no
m

al
y

(m
)

(b)

0 50 100 150 200 250 300 350
0

200

400

600

W
in

d 
Ps

eu
do

st
re

ss
[m

2/
s2

]

Julian Day,1998

TCOON Measurements
Harmonic Forecasts

(a)

(c)

 
 
Figure 2.  (a) Comparison between harmonic forecasts (blue) and measured water levels at the TCOON NAS station 
for 1998.  (b) Water level differences between measured water levels and harmonic forecasts. (c) Measured wind 
pseudostress (squared wind speeds) at the TCOON NAS station for 1998. 
 

At the present time the impact of meteorological 
factors is unaccounted for in water level forecasts in the 
Gulf of Mexico.  To include weather forcing, a linear 
model and an ANN model were recently developed and 
tested for the entrance of Galveston Bay (Cox et al., 
2002, Tissot et al., 2002).  The linear model was based 
on the locally measured wind and a nine-hour lag 
between the wind forcing and the water level response.   
The input to the ANN model included east-west and 
north-south winds, barometric pressure, and wind and 
tidal forecasts.  Both models were found to improve 
significantly short-term (3-24 hours) predictions of total 
water levels and the ANN was shown to outperform the 
linear model particularly in the five to fifteen hour range 
when including forecasted winds.  The objective of this 
work is to develop and assess the performance of ANN 
models for the forecast of total water levels in the CC 
estuary for stations on the open coast and within CC 
Bay. 
 
2. Site, Methodology, and Model Description 
 

The site of this study, the CC estuary, is composed 
of CC Bay, Nueces Bay, and Oso Bay.  It communicates 
with the Gulf of Mexico near Aransas Pass through the 
Corpus Christi Ship Channel, with the Laguna Madre at 
the south end of CC Bay and with Mission Bay at the 
north end of the bay.  Other inputs to the bay include the 
Nueces River and the Cayo del Oso.  The Corpus 
Christi Ship Channel runs through CC Bay from the CC 
port to the Gulf of Mexico at Port Aransas. The ship 
channel is 36 miles (58 km) long, 400 feet (122 m) wide, 
and 45 feet (14 m) deep.  CC Bay is also traversed by 
the Intra Coastal Waterway (ICW), a 12 feet (3.7 m) 

deep and 125 feet (38.1 m) wide channel, that is used 
by barges to transport goods along the Gulf coast from 
South Texas to Florida.  The average depth of the rest 
of CC Bay is relatively shallow at about 10 feet (3.0 m).  
The Bob Hall Pier (BHP) station and the Naval Air 
Station (NAS) will be studied extensively as 
representatives of an open coast and a bay location.  
The model will then be assessed for the other stations 
of the study: Port Aransas, Ingleside, Aquarium, and 
Packery Channel. The stations’ locations are illustrated 
in Figure 1. 

The data sets for each station consist of five yearly 
records from 1997 to 2001 including measured water 
levels and harmonic water level predictions for all 
stations.  A description of the data sets is presented in 
Table 1.  The table lists for the BHP and NAS stations 
the measurements available, the exact span of the 
yearly data sets, and the percent of data missing for 
water level and wind measurements.  The abbreviations 
pwl, wsd, and wdr stand respectively for primary water 
level, wind speed, and wind direction.  For the other four 
stations only the type of data available is mentioned, as 
the data sets are not extensively studied.  The quality of 
the data sets for these other stations is similar although 
no wind measurements are available for the Aquarium 
and Packery stations.  For these stations the wind 
measurements from the nearest station were used for 
the model.  Other measurements collected and archived 
at some of the stations include barometric pressure, air 
and water temperature.  This study will concentrate on 
the use of measured water levels, harmonic forecasts, 
measured wind speeds and wind directions as they 
were found in previous studies to be the dominant 
factors when predicting future water levels.  The missing 



data was replaced by a linear interpolation between the 
closest known measurements.  For a few data sets such 
as the 1997 and 2001 NAS the starting or end date are 
not January 1st or December 31st.  In such cases data 
was removed at the beginning or the end of the year to 
improve the quality of the data set by removing periods 
during which measurements are missing or incomplete.  
The water level measurements in the study are all 
referenced to mean lower low water.  The choice was 
made as mean lower low water levels are the 
measurements indicated in nautical charts and ship 
captains are one of the main targeted audiences for the 
application of this model.  The harmonic forecasts 
included in the study are also extracted from the 
TCOON database.  The forecasts are computed 
following NOAA procedures (Mostella et al., 2002) and 
are based on one year of observations of water levels 
and a set of 26 harmonic constituents.  
 
Table 1.  Summary of the data sets used in the study 
with available measurements, time span, and % missing 
data. 
Station / 
Data Set 

Year 
Data Set 

Span 
Data 

Available 
% pwl 

Missing 
% wsd &  

% wdr 
Missing 

Bob Hall Pier 

1997 1/1/97 – 
12/31/97 

pwl, wsd, 
wdr 0.66 % 5.20 % 

1998 1/1/98 – 
12/31/98 

pwl, wsd, 
wdr 0.01 % 0.48% 

1999 1/1/99 – 
12/31/99 

pwl, wsd, 
wdr 1.20 % 2.20 % 

2000 1/1/00 – 
12/31/00 

pwl, wsd, 
wdr 0.08 % 0.24 % 

2001 1/1/01 – 
12/31/01 

pwl, wsd, 
wdr 0.06 % 0.26 % 

Naval Air Station 

1997 1/22/97 – 
12/31/97 

pwl, wsd, 
wdr 0.66 % 3.9 % 

1998 1/1/98 – 
12/31/98 

pwl, wsd, 
wdr 0.65 % 2.30 % 

1999 1/1/99 – 
12/31/99 

pwl, wsd, 
wdr 0.10 % 0.94 % 

2000 1/1/00 – 
12/31/00 

pwl, wsd, 
wdr 0.01 % 0.15 % 

2001 1/22/01 – 
12/31/01 

pwl, wsd, 
wdr 0.21 % 1.90 % 

Aquarium 1997-2001 pwl 
Ingleside 1998-2001 pwl, wsd, wdr 
Packery 1997-2001 pwl 
Port 
Aransas 1997-2001 pwl, wsd, wdr 

 
The structure of the ANN selected to start the 

optimization process was based on the results obtained 
for previous studies conducted in and directly outside of 
Galveston Bay (Cox et al., 2002, Tissot et al., 2002) and 
at the Port Aransas station (Drikitis, 2002).  These 
studies indicated that very simple ANNs including two 
layers, one output neuron and one or two neurons in the 
hidden layer, are optimal for the forecasting of water 
levels, at least under the conditions encountered along 
the Texas Gulf coast.  Previous studies also indicated 
that previous wind and water level measurements and 

wind and tidal forecasts were the most important input.  
A schematic of a typical ANN model used in this study is 
presented in Figure 3 with a two layer ANN, 1 output 
neuron, two hidden neurons, and an input deck 
consisting of previous water level differences, previous 
east-west and north-south wind pseudostress, 
barometric pressure and wind and tidal forecasts.  All 
inputs to the ANNs are scaled to a [–1.1,1.1] range.  
The optimum ANN topology and input deck are 
determined by varying each input parameter starting 
with previous water levels.  Section 3 presents the 
optimization process for the BHP and the NAS stations. 
The ANN models were developed, trained, and tested 
within the Matlab R13 computational environment and 
the related Neural Network Toolbox (The MathWorks, 
Inc., 1998). The computers used for the study were 
Pentium IV PCs with CPUs ranging between 500 MHz 
and 1.4 GHz. All ANN models were trained using the 
Levenberg-Marquardt algorithm as implemented within 
the Matlab Neural Network Toolbox.  Training times 
varied between a few minutes and several hours.  It is 
important to note that although training times can be 
lengthy, generating water level forecasts is a sub-
second process once the models are trained. 

 

 
Figure 3.  Typical ANN used in this study with two 
layers, a small number of neurons and input deck 
consisting of previous measurements and wind and tidal 
forecasts. 
 

The performance of the models is assessed based 
on criteria used by NOAA for the development and 
implementation of operational nowcast and forecast 
systems (NOAA, 1999).  In this study we focus on a 
subset of these skill assessment variables. A single 
forecasting error or ei is defined as the difference 
between the predicted value pi and the observed value ri 
or ei = pi-ri.  The models are assessed by averaging the 
individual errors over the full data sets, typically one 
year of water level measurements.  The skill 
assessment variables used are the following: 

Average error: Eavg = (1/N) Σ ei  

Absolute Average Error: Eavg = (1/N) Σ ei 
Root Mean Square Error: Erms = ((1/N) Σ ei

2)1/2 



POF(X) – Positive Outlier Frequency or percentage of 
the forecasts X cm or more above the actual 
measurement. 
NOF(X) – Negative Outlier Frequency or percentage of 
the forecasts X cm or more below the actual 
measurement. 
MDPO(X) – Maximum Duration of Positive Outlier. 
MDNO(X) – Maximum Duration of Negative Outlier. 

The value defining an outlier is set at 15 cm for this 
study.  An X=15 cm requirement limits water level errors 
to within +/- ½ foot and is based on NOAA’s estimates 
of pilots’ needs for under keel clearance.  Additionally a 
skill assessment variable, the Normalized RMS Error is 
defined to compare model performance at different 
locations (Cox et al., 2002a).  The root mean square of 
the error is divided by the root mean square of the 
signal to normalize the error with the variability of the 
signal. 
Root Mean Square Signal: Rrms = ((1/N) Σ ri

2)1/2 
Normalized RMS Error: NE = Erms/Rrms 

To evaluate the variability due to both the training of 
the models and the year-to-year differences between 
water level records and overall weather conditions, the 
models are successively trained over each yearly data 
set and tested on the other four data sets.  The rotation 
between training and testing years leads to five training 
sets and twenty testing sets.  The standard deviation of 
the skill variables is used to evaluate the variability of 
the model forecasts and predict their reliability.  The 
standard deviation of the skill variables is however only 
used for general guidance during the optimization of the 
ANNs as the variability due to the inherent year to year 
changes in weather conditions is larger than the 
variability associated with the training of the ANN 
models.  As an illustration the average absolute error 
over the testing sets for the optimum ANN making 3-
hour water level predictions at BHP is 3.1 cm.  The 
overall standard deviation when considering all testing 
sets is 0.3 cm.  The variability of the average absolute 
error associated with the testing of one ANN over the 
four other years is also 0.3 cm.  The average standard 
deviation when considering one year and the 
performance of the 4 ANNs trained on other years is 0.1 
cm.  While the 0.1 cm is considered as the overall 
criteria to determine differences between model 
performances, the optimization process will be 
sometimes based on smaller differences as this is a 
step-by-step process with small successive 
improvements leading to the final optimum model 
performance. 

Finally the performance of the ANNs is also 
compared to a simple model that assumes that the 
water level anomaly at the time of forecast will be 
constant throughout the forecasting period.  The model 
is referred to as the Constant Water Level Difference 
model (CWLD).  This simple model works well when the 
water level anomaly changes slowly with time.  A lag 
proportional to the forecasting span will however always 
be present when applying the CWLD model.  As will be 

discussed in the following sections, while the ANNs 
systematically outperform the CWLD model the 
performance of this simple model is impressive for the 
CC estuary.  The CWLD model is considered here as a 
benchmark but could be used as a simpler yet effective 
replacement to the harmonic forecasts when the 
necessary input to the ANN models are not available or 
when the implementation of ANN models is not 
possible. 
 
3. Application of the Model to the Corpus Christi 

Estuary 
 

The BHP station is the first location considered.  The 
station is located on the open coast near Corpus Christi 
and therefore can be used to provide information to ship 
captains navigating the ship channel during their 
approach to the coast.  Measurements and forecasts for 
this station will also be used to model in-bay locations 
as BHP will provide an indication of the water level 
dynamic in the nearby Gulf of Mexico.  The model is 
optimized by first considering a simple 1x1 ANN with 
logsig and purelin neural functions and an input deck 
consisting of an increasing number of previous water 
level differences.  The absolute average errors of the 
model are displayed in Figure 4 for forecasting times of 
3, 6, 12, and 24 hours.  For a 3-hour forecast the 
optimum performance is obtained when including the 
past 6 hours of water level differences.  The absolute 
average error for this optimum configuration is 0.0314 
m.  As the forecasting time increases the importance of 
previous water levels decreases.  For a 6-hour forecast 
the performance of a model including the past 6 hours 
record of previous water levels is the same as a model 
including the past 3 hours.  Including only the past 3 
hours of water level measurements is also optimum for 
all longer forecasting times.  The improvements 
recorded when considering more than 1 previous water 
level measurements even for long forecasting times 
were expected as two or more previous water levels 
give a measure of the trend, rising or decreasing, in the 
water level anomaly.  
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Figure 4. Changes in ANN performance for a 1x1 ANN 
trained with increasing numbers of previous water level 
differences for various forecasting times, 3-hour 
(red/circles), 6-hour (green/triangles), 12-hour 
(blue/diamonds), and 24-hour (black/squares). 



The second step in the optimization process involves 
the inclusion of past wind measurements.  The models 
are tested with the optimum number of previous water 
level differences and an increasing number of previous 
wind measurements.  For 3-hour forecasts, including the 
past 6 hours of wind records leads to the best 
performance, an average absolute error of 3.09 cm as 
compared to 3.14 cm when including only past water 
level measurements.  As discussed in section 2, while 
these step-by-step differences in model performances 
during the optimization process are often small (1.6% 
here) the cumulative improvements are significant.  For 
forecasts longer than 3 hours the optimum extent of the 
past wind records is 3 hours, although the benefits of 
having the past 3 hours of wind readings as compared 
to only the wind reading at the time of forecast 
decreases as the forecasting time increases.   

The final inputs considered for the BHP model are 
wind forecasts.  In the operational model the wind 
forecasts will be provided through the local Corpus 
Christi Weather Forecasting Office (WFO) (Patrick et al., 
2002, Stearns et al., 2002).  A database of forecasts is 
presently been accumulated at CBI-DNR for a number 
of locations mostly along the Gulf coast but with a few 
locations inland and within the Gulf of Mexico.  The 
forecasts are extracted from the National Center for 
Environmental Predictions (NCEP) Eta-12 model and 
are provided in 3-hour increments.  Similarly when 
including the wind hindcasts into the ANN models, the 
wind information is provided in 3-hour increments up to 
and including the time of forecast.  For the BHP station 
significant improvements are recorded for forecasting 
times equal or larger than 12 hours.  For 24-hour 
forecasts the model performance as measured by the 
absolute average error improves from 6.4 cm to 6.0 cm 
or a 6 % improvement.  A comparison between the 
performances of predictions computed with harmonic 
analysis, the CWLD model, ANNs without wind 
forecasts and ANNs with wind forecasts is presented in 
Figure 5. 

Finally the number of neurons was increased to form 
a 2x1 ANN and 3x1 ANN for 6 hour, 24 hour, and 36 
hour forecasts.  The increase in the number of neurons 

in the hidden layer did not lead to significant 
improvements in any of the skill variables and the 
performance of the ANNs decreased for all cases when 
tested with 3 ANNs.  The optimum models for the BHP 
station therefore consists of 1x1 ANN with the past 
water level difference and wind pseudo stress 
measurements (past 6 hours for 3-hour forecasts and 
past 3 hour measurements for longer forecasts) and the 
forecasted wind pseudostress up to the time of forecast.  
A comparison between water levels measured and 
forecasted using both harmonic and ANN modeling is 
presented in Figure 6.  As can be observed in the figure 
the ANN model is capable of forecasting both negative 
(e.g. JD 346 to 354) and positive (JD 361 to 364) water 
level anomalies and improves substantially over the 
harmonic analysis.  Figure 6 also shows a tendency of 
the ANN model to under predict the water anomaly as it 
is increasing and then over predict the water anomaly 
as it is decreasing.  This model behavior is consistent 
throughout the data sets and is one of the focuses of 
present efforts to improve the model. 
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Figure 5.  Models’ performance for the 1997-2001 time 
span for harmonic forecasts (blue/squares), the 
constant water level difference model (green/diamonds), 
the ANN model without wind forecasts (red 
dashed/triangles) and the ANN model with wind 
forecasts (red/circles) for the BHP Station.
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Figure 6. Comparison of water levels predicted (24 hours) and measured at the BHP station for 1997 JD 343 to 365 
during the passage of cold fronts.  The measured water levels are in black, the harmonic forecasts in blue and the 
ANN forecasts in red.  The ANN forecasts are computed with an ANN trained over the 2001 data set. 



The NAS is then considered as representative of the 
stations inside CC Bay.  Similarly to the BHP station, the 
input decks to the ANNs are optimized by first using 1x1 
ANNs and varying the number of previous water level 
differences from 0 (measurement at the time of forecast 
only) to –12 hours.  For forecasting times up to 9 hours 
the optimum performance is reached by including the 
past 6 hours of water levels.  The difference between 
models including the past 3 hours and the past 6 hours 
measurements is however relatively small.  For 
forecasting times larger than 12 hours including only the 
past 3 hours of measurements is optimal with the 
exception of 24-hour forecasts.  In this case the 
optimum performance is obtained when including the 
past 15 hours but when increasing the forecasting time 
to 30-hours the optimum performance is obtained again 
when including the past 3 hour measurements.  As the 
difference is relatively small between including the past 
3 hours and the past 15 hours, the input to the optimum 
ANN forecasting 24-hour water level is kept the same as 
for the other long forecasting times (past 3 hours).  The 
difference between the 24-hour forecasts case and 
other cases is likely related to either daily phenomena 
such as the strong sea breezes in the spring and 
summers or possibly a small tidal signals not captured 
by the harmonic analysis.  Previous wind pseudostress 
measurements are then included in the models.  While 
previous wind records were found beneficial for BHP, 
this is not the case for NAS for any of the forecasting 
times.  Furthermore wind hindcasts do not improve the 
performance of the ANNs for NAS.  The absence of 
correlation between wind records, past and hindcasted, 
at the NAS will be discussed in section 4.   

The number of neurons in the hidden layer is then 
varied from 1 to 5 for 9-hour, and 24-hour forecasts.  
Recorded improvements in the absolute average error 
are equal or smaller than 0.05 cm.  As these differences 
are small (see section2), 1x1 ANNs are used again for 
the rest of the study.  Possible improvements to NAS 
water level predictions are then investigated when 
including data from the BHP station.  The BHP station 
gives an indication to the model as to the changes in 
water levels on the coast.  For 24-hour and longer 
forecasts significant improvements are recorded when 
including the BHP water level and wind measurements 
at the time of forecast.  Including BHP wind hindcasts 
further improves the performance of the model.  
Including more than the last water level and wind 
measurements do not lead to improvements.  The 
significant improvements obtained when including BHP 
data are discussed in section 4.  The results obtained 
with the optimum ANN with and without including BHP 
Data are presented in Figure 6 for each forecasting 
period tested. 

The performance of the ANN model for NAS is 
illustrated in figures 8, 9 and 10.  Figure 8 displays a 
comparison between water levels measured and 
predicted by the harmonic and ANN models for 1997 
with an ANN model trained over the 2001 data set.  The 

graphic illustrates the ability of the ANN model to take 
into account past and forecasted water levels and 
weather information and model the changes in water 
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Figure 7.  Models performance for the 1997-2001 time 
span for harmonic forecasts (blue/squares), the 
constant water level difference model (green/diamonds), 
the ANN model with only NAS data (red 
dashed/triangles) and the ANN model with additional 
BHP date (red/circles) for the Naval Air Station. 
 
Anomaly for NAS.  Figure 9 presents a detailed view of 
the 1997 forecasts for JD 70 to JD 130 and illustrates 
the capacity of the model to predict positive as well as 
negative water anomalies.  Figure 10 illustrates the 
model performance for NAS during the passage of 1998 
tropical storm Frances.  The ANN model was trained on 
the 1997 Data set and the displayed results are for 12-
hour forecasts.  The graphic illustrates the potential of 
the model to give valuable indications to local 
emergency management personnel during the passage 
of small storms.  It should be pointed out that real-time 
models will rely on forecasted winds and that they are 
typically not as accurate during tropical storms.  
However for short-term forecasts forecasted winds are 
not as important to the model performance and any 
forecasts with a reasonable margin of error would be 
very valuable.  Further testing of the model will be 
necessary to determine its applicability during tropical 
storms. 

Finally the harmonic and ANN water level forecasts 
are compared in Table 2 for 24-hour forecasts.  The 
ANN model results are obtained using the optimized 
models for the BHP and NAS stations.  The optimum 
ANN model obtained for NAS is used as well for the 
other stations as they are all located within CC Bay.  
The optimum 24-hour ANNs input decks for in-bay 
stations include the past 3 hours of water level 
measurements from the bay station, the last water level 
difference and wind measurement and the wind 
hindcasts up to the time of forecast from the BHP 
station.  The improvements of the ANN model over the 
harmonic forecasts are substantial in all cases. 
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Figure 8.  Comparison of 24-hour water level forecasts during 1997 for NAS.  The black line represents measured 
water levels, the blue line harmonic forecasts and the red line ANN forecasts.  The ANN model was trained on the 
2001 data set with the past 3 hours of water levels at NAS and the last water level and wind readings at BHP as well 
as wind hindcasts at BHP. 
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Figure 9.  Detailed view of the previous figure during frontal passages.  The black line represents measured water 

levels, the blue line harmonic forecasts and the red line ANN forecasts.   
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Figure 10. Performance of an ANN trained on the 1997 data set and applied to 1998 during the passage of tropical 
storm Frances for the NAS station – 12-hour forecasts (input to the ANN is same as for Figure 8).  The black line 
represents measured water levels, the blue line harmonic forecasts and the red line ANN forecasts.   

 
Table 2d. Comparison of harmonic analysis and ANN 
model performance for the Ingleside Station (1998-
2001). 

 
Table 2a. Comparison of harmonic analysis and ANN 
model performance for the BHP station (1997-2001). 

 Tide Tables ANN Model 
Average error (bias) -2.9 ± 3.2 cm -0.3 ± 1.4 cm
Average Absolute error 8.2 ± 1.7 cm 4.5 ± 0.6 cm 
Normalized RMS error 0.29 ± 0.05 0.21 ± 0.02 
POF (15 cm) 3.8%±1.7% 0.8% ± 0.4% 
NOF (15 cm) 10.6±7.5% 1.7% ± 2.3% 
MDPO (15 cm) 86 ± 33 hrs 18 ± 6 hrs 
MDNO (15 cm) 204±205 hrs  36 ± 43 

 Tide Tables ANN Model 
Average error (bias) -2.7 ± 2.9 cm -0.4 ± 1.7 cm
Average Absolute error 8.9 ± 1.5 cm 6.0 ± 0.6 cm 
Normalized RMS error 0.29 ± 0.05 0.20 ± 0.02 
POF (15 cm) 4.5% ± 1.9% 2.6% ± 1.3%
NOF (15 cm) 12.8%±6.8% 3.8%±2.6% 
MDPO (15 cm) 67 ± 25 hrs 24 ± 7 hrs 
MDNO (15 cm) 103 ± 67 hrs 39 ± 34 hrs 

  
 Table 2e. Comparison of harmonic analysis and ANN 

model performance for the Packery Station (1997-
2001). 

Table 2b. Comparison of harmonic analysis and ANN 
model performance for the NAS (1997-2001). 

 Tide Tables ANN Model 
Average error (bias) -2.6 ± 2.4 -0.1 ± 1.1 cm
Average Absolute error 8.5 ± 1.5 cm 4.5 ± 0.4 cm 
Normalized RMS error 0.40 ± 0.05 0.21 ± 0.01 
POF (15 cm) 4.8% ± 1.1% 0.9%±0.4% 
NOF (15 cm 11.4%±5.6% 1.3%±1.4% 
MDPO (15 cm) 103 ± 31 hrs 19 ± 6 hrs 
MDNO (15 cm) 205±177 hrs 29 ± 33 hrs 

 Tide Tables ANN Model 
Average error (bias) -2.6 ± 2.2 cm -0.2 ± 0.8 cm 
Average Absolute error 7.6 ± 1.6 cm 3.5 ± 0.4 cm 
Normalized RMS error 0.45 ± 0.07 0.21 ± 0.03 
POF (15 cm) 2.6%±1.1% 0.4% ± 0.3% 
NOF (15 cm) 9.6%±6.4% 1.0% ± 1.3% 
MDPO (15 cm) 77 ± 41 hrs 14 ± 10 hrs 
MDNO (15 cm) 201±187 hrs 30 ± 38 hrs 

  
Table 2c. Comparison of harmonic analysis and ANN 
model performance for the Aquarium Station (1997-
2001). 

Table 2f. Comparison of harmonic analysis and ANN 
model performance for the Port Aransas Station (1997-
2001). 

 Tide Tables ANN Model 
Average error (bias) -1.8 ± 2.2 cm -0.1 ± 0.9 cm
Average Absolute error 8.4 ± 1.2 cm 4.6 ± 0.4 cm 
Normalized RMS error 0.39 ± 0.04 0.21 ± 0.02 
POF (15 cm) 5.0%±1.5% 1.0% ± 0.4% 
NOF (15 cm) 9.9%±5.0% 1.5% ± 1.3% 
MDPO (15 cm) 99 ± 35 hrs 19 ± 5 hrs 
MDNO (15 cm) 178±184 hrs 28 ± 24 hrs 

 Tide Tables ANN Model 
Average error (bias) -2.4 ± 2.6 cm -0.2 ± 1.3 cm
Average Absolute error 8.4 ± 1.4 cm 5.2 ± 0.5 cm 
Normalized RMS error 0.31 ± 0.05 0.19 ± 0.02 
POF (15 cm) 4.6%±1.8% 1.8% ± 0.6% 
NOF (15 cm) 11.1%±5.9% 2.2% ± 2.2% 
MDPO (15 cm) 74 ± 21 hrs 23 ± 7 hrs 
MDNO (15 cm) 123 ± 81 hrs 31 ± 37 hrs 

  



4. Discussion 
 

The ANN models described in this study offer 
substantial performance improvements over harmonic 
analysis for all the main skill variables characterizing 
water level predictions.  The ANN models are beneficial 
for all locations but as can be observed in tables 2a to 2f 
the improvements are more important for in-bay 
locations than for the open coast station, BHP, or the 
Port Aransas station located near the entrance to the 
bay.  This is not surprising as the accuracy of the ANN 
forecasts will be linked to the ability to find a relationship 
between available data at the time of forecasts and 
future water levels.  As the water level dynamic in the in-
bay stations is largely controlled by the Gulf of Mexico 
and water level changes in the Gulf take some time to 
influence the bay (hydraulic resistance of the ship 
channel linking the Gulf and the bay) the information 
collected at the BHP station provides information as to 
the sign and magnitude of the future water level 
changes in the bay.  The further in-bay the station is 
located the longer the lag and the better the 
performance of the ANN models. 

The absence of correlation between the past and 
future winds and the water level changes at NAS is 
probably due to the same dynamic.  The water level 
changes in the bay are largely dominated by the Gulf 
and the in-bay set-up is likely comparatively small 
similarly to the case of Galveston Bay (Cox et al, 
2002b).  Therefore a strong correlation between in-bay 
processes and water level changes should not be 
expected.  NAS wind could have provided information 
as to the wind climate in the Gulf but the winds in CC 
Bay are often different than on the coast due to topology 
and coastal effects.  Even for in-bay processes 
representative in-bay wind measurements are difficult to 
achieve unless the measurements are obtained from a 
platform away from the shorelines.  In-bay wind 
measurements are therefore generally not a good 
measure of the overall coastal and/or local wind 
climates and will often not provide valuable information.  
Following these observations it should be expected that 
BHP measurements and forecasts lead to significant 
performance improvements for in-bay models while 
local winds do not. 

As wind hindcasts rather than actual archived wind 
forecasts are used throughout this study it is important 
to discuss the potential impact on the results of this 
study.  For the real-time application of the model the 
wind forecasts will be extracted from the regional Eta-12 
models through a collaboration with the Corpus Christi 
Weather Forecasting Office (Patrick et al., 2002).  
Forecasted and measured winds have been recently 
compared for three of the stations studied here, BHP, 
NAS and Port Aransas (Stearns et al, 2002).  A 
systematic bias was found between forecasted and 
measured wind speeds and wind directions for each 
station as well as for other stations along the coast.  
Once the biases are taken into account the error is on 
average just a few tenths of a meter per second 
depending on the station with a very slowly increasing 
forecasting error with forecasting time.  Also it was 

shown in previous work for a site on Galveston Island 
(Cox et al., 2002a) that the water level predictions are 
not overly sensitive to the accuracy of the wind 
forecasts.  A database of forecasts is presently 
accumulated for many stations and locations along the 
Gulf of Mexico and the models will be shortly tested with 
the Eta-12 forecasts. 

While the performance improvements are substantial 
further improvements could come from a better 
prediction of the onset of rapidly increasing or 
decreasing water level anomalies.  As was mentioned in 
section 3, the ANN forecasts often lag the 
measurements during frontal passages.  The main 
parameters allowing for the anticipation of rapid water 
level changes are the forecasted winds.  In this study 
forecasted winds at BHP were used for all stations.  As 
winds over the Gulf of Mexico rather than coastal winds 
likely drive the water level anomalies better results could 
be obtained with offshore wind measurements.  Such 
data series are presently accumulated for an offshore 
platform located about 10 miles from the coast.  Other 
strategies are considered such as having different 
models for the three seasons and therefore training 
neural networks that are inherently more sensitive to 
rapid water level changes during frontal passages.  
Finally once a large database of wind forecasts is 
accumulated the ANN could be trained including pure 
wind forecasts over specific portions of the Gulf of 
Mexico not related to TCOON stations.  The flexibility of 
ANN modeling allows to easily mix many different types 
of inputs and is viewed as a significant advantage for 
the modeling of future water level changes. 

As the model will be applied in real-time starting 
during the late spring of 2003 practical challenges 
should be mentioned.  They include accommodating 
dynamically small gaps in the measured data and 
possible equipment malfunctions and building redundant 
strategies when possible to improve the reliability of the 
model.  As the forecasts will be partially based on Eta-
12 forecasts the models might have to be updated or at 
least tested during the regular updates to the Eta model 
conducted by the National Center for Environmental 
Predictions (NCEP).  Such modifications will necessitate 
a continuing and close collaboration between the local 
ANN modelers, the staff responsible for the 
measurement platforms and the local weather 
forecasting office.  
 
5. CONCLUSIONS 
 

ANN models were developed and tested to predict 
water levels at six stations in and directly outside of the 
CC estuary.  Consistent with models previously 
developed for Galveston Bay small 1x1 ANN models 
were found to be optimum.  Increasing the number of 
hidden neurons did not lead to significant improvements 
in the performance of the models.  The optimum number 
of previous water levels and previous wind 
pseudostress measurements varied depending on the 
span of the forecast and the station.  For the open coast 
station, BHP, including the past six hours of 
measurements was found optimal for 3-hour forecasts 



while including only three hours of past measurements 
was found optimum for longer forecasts.  Including 
previous open coast measurements improved the 
forecasts for in- bay stations indicating that as expected 
water levels inside the bay are in large part driven by 
water level changes in the Gulf of Mexico.  The addition 
of wind forecasts improved the performance of all 
models consistent with the observation of a strong 
correlation between wind pseudostress and the water 
level anomaly.  The performance of the model was 
measured by a variety of skill variables.  ANN models 
provided significant improvements over harmonic 
forecasts for all skill variables.  The improvements were 
often better than 50% for the absolute average error and 
more than a factor of 4 or 5 for skills such as POF, NOF, 
MDPO, and MDNO.  Model performances for stations 
deep inside the bay were a little better than for stations 
at the entrance of the bay as the hydraulic resistance of 
the bay and ship channel provide a lag that ANN models 
can take advantage of.  While wind hindcasts were used 
in this work the excellent agreement between Eta-12 
forecasts and measured winds, once a consistent bias 
is included, should lead to similar model performances 
for the real-time model.  A database of Eta-12 historical 
wind forecasts is presently accumulated to confirm the 
performances and applicability of the model. 

Finally the use of ANN modeling methodology 
provided a relatively simple method to include a 
diversity of inputs, both geographically and physically, to 
water level forecasting models.  We believe that ANNs 
represent a powerful and computationally efficient 
modeling technique to provide point forecasts when a 
large database of previous measurements is available.  
A prototype operational model is in development and 
starting during the spring of 2003 ANN water level 
forecasts will be published on the web and possibly 
other venues to provide better forecasts for mariners 
and other coastal users along the Texas Gulf coast. 
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