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1. Introduction

Efforts to observe components of the terrestrial hydro-
logic cycle from space are typically frustrated by the com-
plex spatial and temporal patterns observed in these pro-
cesses in concert with the sampling and resolution limi-
tations of the spaceborne sensor. Two examples of this
difficultly are the estimation of rainfall accumulations at
short time scales (< 1 week) using sparse (2 to 12 sam-
ples per day) retrievals of rainfall rates from space and
the inability of passive microwave remote sensors to es-
timate soil moisture beyond a shallow surface layer (5
cm).

One strategy for addressing these shortcomings is the
design of data assimilation systems to integrate numeri-
cal models of the land surface with remote observations.
A well designed data assimilation system should be ca-
pable of combining land surface information in such a
way that shortcomings in observational and computa-
tional tools are mutually compensated. For instance,
surface soil moisture retrievals from space provides an
indirect measure of antecedent rainfall that, if properly
interpreted, could correct rainfall estimates derived from
sparse temporal sampling of a rainfall event. Likewise,
spaceborne rainfall measurements, combined with an
accurate model of vertical water movement and evapo-
transpiration from the soil column could be used to verti-
cally extrapolate surface soil moisture retrievals through-
out the root zone (Enekhabi et al. 1994).
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The purpose of this analysis is to examine the po-
tential of a particular data assimilation approach - the
Ensemble Kalman filter (EnKF) - to combine temporally
sparse spaceborne precipitation estimates with shallow
soil moisture retrievals. The approach is based on us-
ing an ensemble of precipitation realizations (consistent
with both climatological expectations and sparse space-
borne measurements) to create an ensemble of land sur-
face model predictions. These prediction are, in turn, up-
dated using a remotely observed soil brightness temper-
ature value and the EnKF. As a first approach for proof
of concept, results presented here are generated using
synthetically derived observations.

2. Methodology

a. Land Surface Modeling

Numerical modeling of the land surface was based
on TOPographically-based Land Atmosphere Transfer
Scheme (TOPLATS) simulations (Peters-Lidard et al.
1997) (Famiglietti and Wood 1994). Surface (5-cm) state
predictions made by TOPLATS were processed through
the Land Surface Microwave Emission Model (LSMEM)
to produce corresponding estimates of L-band surface
brightness temperature (TB). Modeling was performed
From 1 April 1997 to 31 March 1998 at the National
Oceanic and Atmospheric Administration/Atmospheric
Turbulence and Diffusion Division (NOAA/ATDD) Little
Washita Watershed site near Chickasha, Oklahoma.
Land cover at the site is grassland/rangeland. Valida-
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tion of TOPLATS and LSMEM predictions was performed
using flux tower data at the site and observations made
during the 1997 Southern Great Plains Hydrology Exper-
iment (SGP97).

b. Conditioned Rainfall Distributions

Using 15-minute rain gauge data collected at Oklahoma
Mesonet stations during 1997 and 1999, daily rainfall
accumulation estimates R̂ were constructed based on
the sub-sampling of ν 15-minutes rainfall rates per day.
This data was used to mimic sampling errors associated
with the sampling limitations of daily rainfall accumula-
tions derived from spaceborne radar. Each estimate R̂
was matched with a corresponding actual rainfall value
R derived from all 96 daily 15-minute values. In this way,
a series of conditional distributions fν(R/R̂) were con-
structed for various discrete ranges of R̂. These distribu-
tions describe the manner in which knowledge of R̂ con-
ditions expectations about actual rainfall accumulations.
This conditioning, of course, depends on the frequency
of sampling which support the estimation. Sets of condi-
tional distribution were constructed for ν values of 2, 4,
6, 8, and 12 day−1.

c. The Ensemble Kalman Filter

The Ensemble Kalman filter (EnKF) is based on the gen-
eration of an ensemble of model predictions to estimate
the error/covariance information required by the standard
Kalman filter (KF) for the updating of model predictions
with observations (Reichle et al. 2002) (Evensen 1994).
The EnKF can be generalized using a state space repre-
sentation of prediction and observation operators. Take
Y(t) to be a vector of land surface state variables at time
t. The equation describing the evolution of these states,
as determined by a potentially nonlinear land surface
model f , is given by:

dY
dt

= f(Y,w) (1)

where w relates errors in model physics, parameteriza-
tion, and/or forcing data and is taken to be mean zero
with a covariance Cw. The goal of the filtering problem
is to constrain these predictions using a set of observa-
tions which are related to the model states contained in
Y. Let the operator M represent the observation pro-

cess which relates Y to the actual measurements taken
at time tk:

Zk = M(Y(tk),vk) (2)

where vk represents Gaussian measurement error with
covariance Cvk. The EnKF is initialized by the intro-
duction of synthetic Gaussian error into initial conditions
and generating an ensemble of model predictions using
equation (1). At the time of measurement predictions
made by the ith model replicate are referred to as the
state forecast Yi . If f is linear and all errors are additive,
independent and Gaussian, the optimal updating of Yi

by the measurement Zk is given by:

Yi
+ = Yi + Kk[Zk −Mk(Yi )] (3)

and:
Kk = [CY M (CM + Cv)−1]t=tk

(4)

where CM is the error covariance matrix of the mea-
surement forecasts Mk(Yi ) and CY M is the cross-
covariance matrix linking the predicted measurements
with the state variables contained in Yi . All covariance
values are statistically estimated around the ensemble
mean. Here Yi

+ signifies the updated or analysis state
representation.

d. Fraternal Twin Experiment

The overall methodology of the analysis was based on
a fraternal twin data assimilation experiment. First, a
single TOPLATS/LSMEM simulation, validated by inde-
pendent observations and forced by all available mete-
orological data, was designated as truth. “True” TB ob-
servations were then perturbed with random error (Cvk)
to form the set of observations Zk. Based on R̂ val-
ues derived from 15-minute rainfall data, daily rainfall
ensembles were generated by sampling from the ap-
propriate fν(R/R̂) distribution. Sampled daily rainfall
amount were downscaled to hourly based on the frac-
tion of daily precipitation rate samples where rainfall was
detected. These hourly rainfall realizations were, in turn,
used to generate an ensemble of TOPLATS state (Y)
and observation (M) forecasts from which the prior es-
timates of model errors (CY M and CM ) could be ob-
tained. Each member of the ensemble was then updated
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using the perturbed observations in Zk and the EnKF up-
date equation given in (3).

An analogous set of updated open loop TOPLATS sim-
ulations were constructed using a sub-sampling proce-
dure on 15-minute rainfall gauge data at the study site.
For a daily sampling frequency of ν, rainfall rates were
assumed constant and equal to the observed 15-minute
gauge-derived rate for the 24ν−1 hour period centered
on each observation. Open loop simulations describe
the accuracy of model results in the absence of updat-
ing with TB observations. Both set of results (EnKF and
open loop) were repeated using each of 15-minute rain-
fall observations in the first 24ν−1 hour sampling interval
as the simulation start time.

3. Results

Figure 1 shows the sequential operation of the EnKF
for a five day period during summer 1997. Ensemble
spreads for TB originate from forcing TOPLATS with rain-
fall realizations sampled from the appropriate fν(R/R̂)
distribution. TB measurements (in red) update each
member of the ensemble using error statistics sampled
from the ensembles and (3). This updating adjusts par-
ticular realizations to compensate for rainfall forcing er-
rors and reduces the total spread of the ensemble.

Figure 2b compares EnKF and open loop results for in-
tegrated soil moisture values within the top 40-cm of the
soil column. EnKF results are for an ensemble size of 25,
an assumed Cv of 16 K2, daily observations of TB and 8
rainfall rate samples per day. Open loop results are for 8
sample of rainfall rate per day and no TB observations.
It is important to note that 40-cm is roughly 8 times the
penetration depth of L-band TB observations and far be-
yond the depth that can be accurately updated through
direct insertion of surface soil moisture retrievals.

Open loop and EnKF results in Figure 1b are for a
rainfall observation start time of 0000 CST. Analogous
results can be obtained for start times corresponding
to each of 15-minute intervals between 0000 and 0300
CST. Figure 1c shows root-mean-square (RMS) errors
for results derived from all possible start times. Through-
out the growing season the EnKF-based integration of
TB measurements substantially improves the represen-
tation of 40-cm soil moisture dynamics.
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Figure 1: Demonstration of the EnKF assimilation proce-
dure.

Figure 3 gives RMS results averaged over the entire
simulation period for a range of rainfall and TB sampling
frequencies. Generally, the assimilation of TB measure-
ments reduces the RMS error in 40-cm soil moisture pre-
dictions by more than 60%. The correction associated
with assimilated TB observations is substantial even for
TB measurement frequencies as low as once every five
days. As TB measurements become more frequent, the
observed sensitivity of soil moisture errors to rainfall ob-
servation frequency decreases. To the point where as-
similation of daily TB measurements essentially elimi-
nates the sensitivity of soil moisture results to the fre-
quency of rainfall observations.

4. Discussion

Results demonstrate the basic feasibility and effective-
ness of the EnKF as a framework for integrating daily
rainfall estimates derived from temporally sparse rate es-
timates with surface TB observations for the monitoring
of root-zone soil moisture. Results with synthetically gen-
erated data show that the approach can theoretically cor-
rect for a substantial fraction of soil moisture error asso-
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Figure 2: a) Times series of rainfall and benchmark 40-
cm soil moisture predictions. b) Open loop and EnKF re-
sults for 40-cm soil moisture given 8 rainfall samples per
day and daily TB observations. c) Open loop and EnKF
40-cm soil moisture RMS errors for all possible rainfall
observation starting times.
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Figure 3: RMS errors for 40-cm soil moisture results de-
rived from various combinations of TB and rainfall mea-
surement frequencies.
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ciated with the sparse temporal sampling of rainfall. Cur-
rent work focuses on demonstrating analogous results
with actual observations and more precise assessments
of filter performance.

References

Entekhabi, D., H. Nakamura, and E.G. Njoku, Solving the
inverse problem for soil moisture and temperature pro-
files by sequential assimilation of multifrequency re-
motely sensed observations, IEEE Trans. Geosci. Re-
mote Sens., 32:438-447, 1994.

Evensen, G., Sequential data assimilation with a nonlin-
ear quasi-geostrophic model using Monte Carlo meth-
ods to forecast error statistics, J. of Geophys. Res.,
99:10143-10162, 1994.

Famiglietti, J.F., and E.F. Wood, Multiscale modeling
of spatially variable water and energy balance pro-
cesses, Water Resour. Res., 30:3061-3078, 1994.

Peters-Lidard, C.D., M.S. Zion, and E.F. Wood, A soil-
vegetation-atmosphere transfer scheme for model-
ing spatially variable water and energy balance pro-
cesses, J. Geophys. Res., 102:4303-4324, 1997.

Reichle, R.H., D.B. McLaughlin, and D. Entekhabi, Hy-
drologic data assimilation with the Ensemble Kalman
filter, Mon. Weather Rev., 130:103-114, 2002.

5


