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Abstract - The SSM/I application presented in 
this paper illustrates a NN based intelligent 
integral approach in satellite retrievals when the 
entire retrieval system, including the quality 
control block, is build as a combination of 
several specialized NNs.  This approach offers 
significant advantages for operational 
applications.  This intelligent retrieval system not 
only produces accurate retrievals, it also 
performs an analysis and quality control of these 
retrievals and environmental conditions, 
rejecting poor retrievals if they occur.    
 
1. INTRODUCTION 
 
 Conventional methods for deriving 
geophysical parameters from satellite data 
(satellite retrievals) involve solving an inverse (or 
retrieval) problem and deriving a transfer 
function (TF), f, which relates a geophysical 
parameter of interest, G (e.g. surface wind 
speed over the ocean, atmospheric moisture 
concentration, sea surface temperature, etc.), to 
a satellite measurement, S (e.g. brightness 
temperatures, radiances, reflection coefficients, 
etc), 

G = f (S)   (1) 
 
where both G and S may be vectors.  The TF, f, 
(it is also called a retrieval algorithm) can usually 
not be derived directly from the first principles 
because the relationship (1) does not 
correspond to a cause and effect principle.   The 
relationship, however, can be written 
 

S = F (G)      (2) 
 
where F is a forward model (FM), which relates 
a vector G  to a vector S.  Forward models can 
usually be derived from physical considerations 
(e.g., radiative transfer theory) in accordance 
with the cause and effect principles because 
geophysical parameters affect the satellite 
measurements (not vice versa). 
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 NNs can be used to emulate FMs (2) 
and TFs (1) because FM and TF both are 
continuous mappings.  There are many practical 
advantages (computational speed, accuracy, 
robustness) that can be achieved by using NNs 
for emulating FMs and TFs.  A further advantage 
is the easiness and flexibility of incorporating 
into the NN any additional geophysical 
parameter known to influence the satellite 
measurements but not appearing in the original 
FM.  This can improve the accuracy of the FM 
and can also help to regularize the inverse 
problem.  To train NN, which emulates an 
explicit TF and/or FM, a training set, {G, S}i=1,…,N, 
(S ∈ST) is required.   Simulated or empirical data 
can be used to create the training set.   
 Well-constructed NNs have good 
interpolation properties; however, they may 
produce unpredictable outputs when forced to 
extrapolate.  The NN training data (produced by 
a theoretical FM or constructed from empirical 
data collections) cover a certain manifold ST (a 
subspace ST ∈ S) in the full S space.  Real data 
to be fed into the NN fNN, which emulates a TF 
(1), may not lie exactly in ST.  There are many 
sources for such deviations of real data from the 
low dimensional manifold ST of simulated data, 
e.g. simplifications made in the construction of 
the model, neglecting the natural variability of 
parameters occurring in the model and 
measurement errors in the satellite signal not 
taken into account during the generation of the 
training data.  When empirical data are used, 
extreme events (highest and lowest values of 
geophysical parameters) are usually not 
sufficiently represented in the training set 
because they have a low frequency of 
occurrence in nature.  That means that in the 
retrieval stage real data in some cases may 
force the NN fNN to extrapolate.  The error 
resulting from such forced extrapolation will 
increase with the distance of the input point from 
ST and will also depend on the orientation of the 
input point relative to ST.  
 In order to recognize NN input not 
foreseen in the NN training phase and thus out 
of scope of the inversion algorithm, the validity 
check (Schiller and Krasnopolsky, 2001) can be 
used.  Let the model S = F(G) have an inverse,  
G = f(S),  then, by definition, S = F(f(S)).  
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OMBNN3 OMBFM1
Further, let fNN be the NN emulating the inverse 
model in the domain ST.  The result of G0 = 
fNN(S0) for S0 ∉ ST may be arbitrary, and in 
general,  F(fNN(S0)) will not be equal to S0.  The 
validity of S = F(fNN(S)) is a necessary condition 
for S ∈ S. Now, if in the application stage of the 
NN, fNN , S is not falling into domain ST, the NN,  
fNN , is forced to extrapolate.  In such a situation 
the validity condition may not be fulfilled, and the 
resulting G in general is meaningless.  For 
operational applications it is necessary to signal 
such events to the next higher evaluation level.  
In order to perform the validity test the FM must 
be applied after each inversion. This requires a 
fast but accurate FM. Such FM can be achieved 
by a NN emulating accurately the original FM, S 
= FNN(G).  So, the validity check algorithm 
consists of a combination of inverse and forward 
NNs that, in addition to the inversion, computes 
a quality measure for the inversion:  

 

 
δ = || S - FNN(fNN(S)) ||   (3) 

Fig. 1   SSM/I retrieval algorithm (OMBNN3) 
emulating the inverse model to retrieve vector G 
of four geophysical parameters: ocean surface 
wind speed (W), water vapor (V) and liquid 
water (L) concentrations, and sea surface 
temperature (SST) if given five brightness 
temperatures S = TXXY (XX – frequency in 
GHz, Y – polarization).  This vector G is fed to 
the OMBFM1 emulating the forward model to 
get brightness temperatures S′ = TXXY′.  The 
difference ∆S = |S - S′ | is monitored and raises 
a warning flag if it is above a suitably chosen 
threshold. 

 
In conclusion, the solution to the problem of 
scope check is obtained by verifying the 
retrieved parameters using a NN emulating the 
FM and comparing the result with the 
measurement. This procedure  (i) allows the 
detection of situations where the forward model 
is inappropriate, (ii) does an “in scope” check for 
the retrieved parameters even if the allowed 
region has a complicated geometry, (iii) can be 
adapted to all cases where a NN is used to 
emulate the inverse of an existing forward 
model. 

 
retrievals, which are physically meaningless (i.e. 
not related to actual surface wind speed).  
Usually a statistically based retrieval flag is used 
to indicate such occurrences.  Under 
complicated local conditions, however, this flag, 
because it is based on global statistics, 
produces significant amount of false alarms or 
does not produce alarms where needed.   

 
2. SSM/I WIND SPEED RETRIEVALS 
 
The OMBNN3 SSM/I retrieval algorithm 
(Krasnopolsky et al., 1999) is running as the 
operational algorithm in the data assimilation 
system at NCEP (NOAA) since 1998.  Given five 
brightness temperatures, it retrieves four 
geophysical parameters: ocean surface wind 
speed, water vapor and liquid water 
concentrations, and sea surface temperature.  
At high levels of liquid water concentration the 
microwave radiation cannot penetrate clouds 
and surface wind speed retrievals become 
impossible. 

 An intelligent NN based system shown 
in Fig. 1 was developed to improve this situation.  
NN SSM/I forward model OMBFM1 
(Krasnopolsky, 1997) is used in combination 
with the OMBNN3 retrieval algorithm.  The 
validity check shown in Fig. 1, if added to 
standard retrieval flag, helps to indicate 
occurrences when S is outside the training 
domain. 
 For each satellite measurement S, 
geophysical parameters retrieved from 
brightness temperatures S are fed into NN 
SSM/I forward model, which produces another 
set of brightness temperatures S′.  For S from 
training domain (S∈ST) the difference, ∆S = |S - 
S′ |, is sufficiently small, for S outside training 

 Brightness temperatures for these 
occasions fall far outside the training domain ST.  
However, the retrieval algorithm in these cases, 
if not flagged properly, will produce wind speed 
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 Fig. 2 (a) Percentage of removed data (dashed 

line) and wind speed accuracy improvement as 
functions of the threshold for BT discrepancy 
∆S.  The vertical line shows three standard 
deviations for ∆S.  (b) Wind speed RMS and 
maximum errors (dashed) dependency on the 
percentage of the removed data. 

Fig. 3.  Wind speed distribution of original data 
set (red) and of data removed by our quality 
control procedure (blue); the threshold is equal 
to 2σ. 
 
removed by our quality control procedure.   
Distributions for removed data are similar to 
distributions of original data. Their maxima are 
located approximately in the same places where 
the maxima of original distributions are located.  
It means that this quality control procedure filters 
out a type of noise which does not depend on 
weather conditions.  

 
domain the difference raises a warning flag if it 
is above a suitably chosen threshold.  Statistical 
estimates for ∆S show that the standard 
deviation of this value is about σ = 1.1°K.  Fig. 
2a shows the percentage of removed data and 
improvements in the accuracy of the wind speed 
retrievals as functions of this threshold.  The 
vertical dashed line shows the value of 3σ 
(about 3.3°K).  Fig. 2b illustrates dependencies 
between the wind speed RMS error and 
maximum error and the percentage of the 
removed data.  It shows that applying the 
generalization control reduces the RMS error 
significantly; the maximum error is reduced even 
stronger.  For example, if the threshold value of 
about 2.5°K is selected, the validity check 
removes about 20% of data, which leads to 
about 10% improvement in the wind speed RMS 
error and to 30% decrease in the maximum wind 
speed error.  Such a significant reduction in 
maximum errors means that the validity check 
approach is very efficient for removing outliers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  It is well known that a lot of outliers are 

located at the far ends of distributions of 
retrieved parameters; and it might happen that 
our procedure would simply remove events with 
extreme values of wind speeds, water vapor and 
liquid water concentration.  It does not happen.  
Figs. 3, 4, and 5 show distribution of wind 
speeds, water vapor and liquid water 
concentrations for original data set and for data   

 
 
 
Fig. 4.  Columnar water vapor distribution of 
original data set (red) and of data removed by 
our quality control procedure (blue); the 
threshold is equal to 2σ. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  Columnar liquid water distribution of 
original data set (red) and of data removed by 
our quality control procedure (blue); the 
threshold is equal to 2σ. 
 
 
3. CONCLUSIONS   
 
A NN based validity check technique (Schiller 
and Krasnopolsky, 2001) was applied to SSM/I 
wind speed retrievals.  An intelligent NN system 
incorporating SSM/I NN forward model and 
SSM/I NN retrieval algorithm was developed and 
tested.  This system successfully reduces both 
the wind speed RMS errors and maximum 
errors.  Similar systems can be developed for 
other types of sensors and retrieval parameters. 
 
References   
Krasnopolsky, V.M., W.H. Gemmill, and L.C. 
 Breaker, “A multi-parameter empirical 
 ocean algorithm for SSM/I retrievals”, 
 Canadian Journal of Remote Sensing, 
 25, pp. 486-503, 1999 
Krasnopolsky, V.M., “A neural network-based 
 forward model for direct assimilation of 
 SSM/I brightness temperatures”, 
 Technical Note, OMB contribution No. 
 140, NCEP/NOAA, 1997 
Schiller H., and V.M. Krasnopolsky, “Domain 
 check for input to NN emulating an 
 inverse model”, International Joint 
 Conference on Neural Networks, 
 Washington, DC, July 15-19, 2001, pp. 
 2150-2152 
                                                                           
 


