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1. INTRODUCTION 
 
 Ocean wind wave modeling for hindcast 
and forecast purposes has been at the center of 
interest for many decades.  Numerical prediction 
models are generally based on a form of the 
spectral energy or action balance equation 
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Interaction Approximation (DIA, Hasselman et al 
1985).  The development of the DIA allowed for 
the successful development of the first third-
generation wave model WAM (WAMDI Group 
1988).  More than a decade of experience with 
the WAM model and its derivatives has identified 
shortcomings of the DIA. The DIA tends to 
unrealistically increase the directional width of 
spectra, has a systematic spurious impact on 
the shape of the spectrum near the spectral 
peak frequency, and has a much too strong 
signature at high frequencies.  In present third 
generation wave models, these deficiencies can 
be countered at least in part by the dissipation 
source term Sds, which is generally used for 
tuning the energy balance in the equation (1).  
Although this approach gives good results, it is 
counterproductive, because it prohibits 
development of dissipation source terms based 
on solid physical considerations.  With our 
increased understanding in the physics of wave 
generation and dissipation, this becomes an 
even bigger obstacle impeding further 
development of third-generation wave models. 

 

where F is the spectrum,  Sin  is the input source 
term, Snl is the nonlinear interaction source term, 
Sds is the dissipation or 'whitecapping' source 
term, and Ssw represents additional shallow 
water source terms.  Several studies 
(Hasselman et al 1973) identified the active role 
of the nonlinear interactions in wave growth and 
the need for explicit modeling of Snl in wave 
models.  State-of-the-art or so-called third 
generation wave models therefore explicitly 
model this source term. 
 In its full form (e.g., Hasselmann and 
Hasselmann 1985), the calculation of the 
interactions Snl requires the integration of a six-
dimensional Bolzmann integral:   

 
2. NN PARAMETERIZATION OF Snl 
 
 Considering the above, it is of crucial 
importance for the development of third 
generation wave models to develop an 
economical yet accurate approximation for Snl.  
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where the complicated coupling coefficie
contains moving singularities (K. Hassel
1973).  This integration requires roughly 1
104 times more computational effort tha
other aspects of the wave model comb
Present operational constraints require th
computational effort for the estimation 
should be of the same order of magnitude a
remainder of the wave model.  This require
was met with the development of the Discre
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Here, we explore a Neural Network Interaction 
Approximation (NNIA) to achieve this goal (see 
also Krasnopolsky et al 2002).  NNs can be 
applied here because the nonlinear interaction 
(2) is essentially a nonlinear mapping 
(symbolically represented in eq. (2) by T) which 
relates two vectors (2-D fields in this case).  
Thus, the nonlinear interaction source term can 
be considered as a nonlinear mapping between 
a spectrum F and a source term Snl 
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Snl = T(F) ,                   (3) 
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where T is the exact nonlinear operator given by 
the full Bolzmann interaction integral (2) 
(Hasselmann and Hasselmann 1985).  
Discretization of S and F (as is necessary in any 



numerical approach) reduces (3) to continuous 
mapping of two vectors of finite dimensions.  
Modern high resolution wind wave models use 
descretization on a two dimensional grid which 
leads to dimensions of S and F vectors of order 
of N (∼1000) (Tolman 1999).  It seems 
unreasonable to develop a NN approximation of 
such a high dimensionality (about 1000 inputs 
and outputs).  Moreover, such a NN will be grid 
dependent.          
 In order to reduce the dimensionality of 
the NN and convert the mapping (3) to a 
continuous mapping of two finite vectors 
independent on the actual spectral 
discretization, the spectrum F and source 
function Snl are expanded using systems of two-
dimensional functions each of which (Φi and Ψq) 
creates a complete and orthogonal two-
dimensional basis 
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where for xi and yq we have 
 

∫∫∫∫ Ψ=Φ= qnlqii SyFx ,
     

where the double integral identifies integ
over the spectral space.  Because both s
basis functions {Φi}i=1,…,n and {Ψq}q=1,…,m
complete, increasing n and m in (4) imp
the accuracy of approximation, and 
spectrum F and source function Snl ca
approximated by (4) with a required accu
Substituting (4) into Eq. (3) we can get 
 

 Y = T (X),                         
which represents a continuous mapping 
finite vectors X ∈ ℜn  and Y ∈ ℜ m , and wh
still represents the full nonlinear inter
operator.  This operator can be approxim
with a NN with n inputs and m outputs 
neurons in the hidden layer 
 

 Y = TNN (X)                 
 
The accuracy of this approximation (T
determined by k, and can generally be imp
by increasing k. 
 To train the NN approximation TNN
a training set has to be created that consi
pairs of vectors X and Y.  To create this tr
set, a representative set of spectra Fp has
generated with corresponding (e
interactions Snl,p using eq. (2).  For each p
Snl)p, the corresponding  vectors (X,Y)
determined using eq. (5).  These pairs of ve

are then used to train the NN to obtain TNN.  
After TNN has been trained, the resulting NN 
Interaction Approximation (NNIA) algorithm 
consists of three steps:  

1. decompose the input spectrum, F, by 
applying Eq. (5) to calculate X; 

2.  estimate Y from X using Eq. (7); 
3.  compose the output source function, 

Snl, from Y using Eq. (4). 
 A graphical representation of the NNIA 
algorithm is shown in Figure 1. 
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Figure 1.  Graphical representation of the NNIA 
algorithm. 
 
 The above describes the general 
procedure for developing an NNIA. Development 
of an actual NNIA requires the following steps: 
(1) select basis functions Φi and Ψq and the 
number of each (n,m); (2) design a NN topology 
(number of neurons k); (3) construct a 
representative training set; and (4) select 
training strategies. 
 The first three points all have a 
significant impact on both accuracy and 
economy of a NNIA. Unfortunately, there is no 
pre-defined way to tackle these issues.  It is 
therefore unavoidable that the development of a 
NNIA involves much iteration.  The first 
requirement for a NNIA to be potentially useful in 
operational wave modeling is that the exact 
interactions Snl are closely reproduced for 
computational costs comparable to that of the 
DIA.    
 In (Krasnopolsky et al, 2002) we 
address the basic feasibility of a NNIA, we have 
considered a NNIA to estimate the nonlinear 
interactions Snl(f,θ) as a function of frequency f 
and direction θ  from the corresponding 
spectrum F(f,θ).  In this study we used a 
mathematical bases for the decomposition of the 



nonlinear interactions Snl(f,θ) and the spectra 
F(f,θ). As is common in parametric spectral 
descriptions, we choose separable basis 
functions where frequency and angular 
dependence are separated. For Φi this implies: 
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A similar separation was used for Ψq.   
 To train and test this NNIA, we used a 
set of about 10,000 simulated realistic spectra 
for F(f,θ), and the corresponding exact estimates 
of Snl(f,θ) (Van Vledder et al 2000).  Separate 
data sets have been generated for training and 
validation.  Preliminary version of the NNIA 
algorithm (Krasnopolsky et al., 2002) has twice 
better accuracy than DIA and is only about 5 
times slower than the DIA algorithm. 
 The results presented in this work 
represent the next stage of the development.  To 
improve the accuracy of the NN algorithm, we 
attempted to optimize the basis used for the 
composition and decomposition of F(f,θ) and 
Snl(f,θ).  To guarantee the fastest conversions, 
we used a natural basis of empirical orthogonal 
functions (EOF) generated by the ensembles of 
spectra and nonlinear interactions 
correspondingly.  In this case the basis functions 
are 2-D fields, the composition and 
decomposition procedures are straightforward 
(do not include Fourier transform).  They 
converge faster and provide higher 
approximation accuracy than in the case of a 
mathematical basis (8).  Table 1 shows 
comparison of accuracies of approximation 
using these two bases.  EOF allow significantly 
more accurate approximation (approximately 
five times lower RMSE) for both F(f,θ) and 
Snl(f,θ).  The difference between CRMSE and 
Mean RMSE is explained below. 
 
 Table 1.  RMSE approximation statistics for 
independent set of 10,000 F and Snl comparing 
mathematical (Math) and EOF bases. 
 

 Basis Type CRMSE Mean RMSE 
Math 0.14 0.012 F 
EOF 0.03 0.0044 
Math 5,175. 425. Snl 
EOF 623. 32. 

 
 To generate EOFs and to train this new 
NN, we simulated a set of 10,000 realistic 
spectra for F(f,θ), and the corresponding exact 
estimates of Snl(f,θ) (Van Vledder et al 2000).  
Separate data set (10,000 spectra and nonlinear 

interactions) have been generated for test and 
validation.  To distinguish our new NN algorithm 
based on the use of EOF from the previous one 
(NNIA), we will call it NNIAEOF.  Table 2 
compares the accuracy  of DIA, NNIA, and 
NNIAEOF on the same independent (not used 
for training and/or generating of EOF bases) set 
of 10,000 F and Snl.   Two types of statistics are 
presented here.  First is a cumulative RMSE 
which is calculated as, 
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where N = 10,000,  Xi  is DIA or NNIA or 
NNIAEOF approximation for i-th Snl(f,θ) and Yi is 
the exact i-th Snl.   Second type of statistics 
presented in Table 2 are Mean RMSE and SD 
RMSE.   RMSE is calculated for each particular 
nonlinear interaction in this case.  Then the 
mean value and the standard deviation (SD) are 
calculated for this set of RMSEs. 
 
 Table 2.  CRMSE, Mean RMSE and SD 
RMSE statistics for independent set of 10,000 F and 
Snl comparing performances of DIA, NNIA, and 
NNIAEOF. 
 

Method CRMSE Mean 
RMSE 

SD 
RMSE 

DIA 13,266. 3,124 5,273. 
NNIA 6,590. 882. 1,888 

NNIAEOF 2,836. 354. 750. 
 

 

NNIA NNIAEOF

Figure 2. RMSEs as functions of frequency, f, for DIA 
(green), NNIA (blue, left panel, two blue curves 
correspond to different numbers of neurons in the 
hidden layer of the NN), and NNIAEOF (blue, right 
panel).  Red curves show RMSEs of the 
approximation for Math basis (right panel) and EOF 
basis (left panel). 
 
Table 2 demonstrates better performance of the 
NNIAEOF algorithm as compared with both DIA 
and NNIA.  Figure 2 gives a graphical 
representation of this comparison.  It also shows 



 a dramatic improvement in the accuracy of the 
approximation with the transition from the 
mathematical basis to the EOF basis.  Figure 3 
demonstrates a comparison of performances of 
DIA and NNIAEOF for different spectra (spectra 
with the different energy). 

 
 
 
 
 
  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Comparison of performance (log10(RMSE) 
along the vertical axis) of DIA (blue curve) and 
NNIAEOF (red curve) for different energies of the 
input spectra (horizontal axis).  
 
Fig. 3 shows that advantage of the NNIAEOF 
algorithm as compared with DIA increases from 
the factor about 2 at low energies to about 10 at 
higher energies.   Figure 4 shows a typical 
nonlinear interaction, Snl, together with its 
representation by DIA and NNIAEOF. 
 
3. CONCLUSIONS 
 
 In this study we showed that the use of 
EOF bases for the decomposition and 
composition of spectra and nonlinear 
interactions in a combination with the NN, which 
is trained to provide the relationship between the 
coefficients of these decompositions, gives 
significant advantage as compared with the use 
of mathematical bases.  Transition from 
mathematical bases to natural bases (EOF) 
improved performance of our NN approach, 
NNIAEOF, about three times as compared with 
its previous version, NNIA.  NNIAEOF five times 
outperforms DIA on average.  For spectra of 
higher energy the improvement in accuracy 
reaches an order of magnitude.  NNIA is still as  

 
 
 
 
Figure 4. A typical nonlinear interaction (black) 
together with its the EOF approximation (red), DIA 
(green), and NNIAEOF (blue).  Left panel shows Snl 
integrated over the angle and right one shows Snl 
integrated over the frequency. 
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fast as NNIA – several orders of magnitude 
faster than exact calculations and only four – 
five times slower than DIA. 
 We demonstrated that the use of a 
natural basis like EOF can improve the 
performance of our algorithm as compared with 
the case when a mathematical basis is used.  
We expect that a transition to a physical basis 
for decomposing Snl, basis, which takes into 
account conservation laws, symmetries, and 
normalization, will allow us to further improve the 
performance of our NN approach.  
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