
J1.2            USE OF A NEURO-VARIATIONAL METHOD TO IMPROVE ATMOSPHERE AND OCEAN 
                      PARAMETER RETRIEVAL  FROM OCEAN COLOR SENSOR 

 
 
                            Cédric Jamet* 
            ACRIst, Sophia-Antipolis, France / LODyC, Université de Paris 6, Paris, France  
               Sylvie Thiria 
                 LODyC ; Université de Paris 6, Paris, France 
                Cyril Moulin 
                         LSCE, CEA,  Gif-sur-Yvette, France 
              Michel Crepon 
                  LODyC ; Université de Paris 6, Paris, France 
 
 
 
 
1. INTRODUCTION 
 

The retrieval of ocean constituents from satellite  
ocean color measurements is very sensitive to the  
atmospheric correction. Improved atmospheric 
correction algorithms, which simultaneously estimate 
ocean and aerosol optical properties, have recently 
been developed (Gordon, 1997; Gordon and Wang, 
1994, Gordon and al., 1997). These new methods 
perform well in the presence of absorbing aerosols, but 
are difficult to include in operational ocean color data 
processing because they use look-up tables, which are 
costly in computer-time. Advanced programming 
techniques such as Neural Network (NN) can facilitate 
the implementation of such improved atmospheric 
correction techniques in operational processing. 

Our atmospheric correction algorithm  relies on a  
classical variational inversion  combined with a set of 
Multilayered Perceptron (MLP) neural networks (NNs)  
(Bishop, 1995) . In this paper we describe the 
methodology and we present the performance of the 
different NNs, which are the core of the inversion. In 
final, we discuss the first qualitative results obtained for 
the East Coast of the United States from SeaWiFS 
imagery.  
 
2. METHODOLOGY OF THE INVERSION 
 

Once corrected for gaseous absorption and 
Rayleigh scattering, the reflectance "measured" by an 
ocean color sensor in the visible and near infrared can 

be written as wACOR t ρρρ *+= , where Aρ  is the 

atmospheric reflectance due to the aerosol scattering 
and the scattering due to the interaction between  
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aerosol and molecules, t is the diffuse transmittance and 

Wρ , the water leaving reflectance. In this work, we 
follow the work of Chomko and Gordon (Chomko and 
Gordon, 1998), who developed an atmospheric 
correction algorithm that uses set of Junge power-law 

size distributions to compute Aρ  and a semi-analytic 

model (Gordon and al., 1988) for Wρ . For clarity, the 
method is hereafter described for the Sea-viewing Wide 
Field-of-view Sensor (SeaWiFS), but note that it would 
be applicable to every ocean color sensor as well.  

Our NN-based method is thus decomposed in two  
steps: a first inversion relies on the red and near-
infrared (NIR) SeaWiFS bands (670, 765, 865 nm) to 
get a first guess on three keys aerosol parameters (i.e., 
aerosol size distribution, ν, the real part of the refractive 

index, rm , and aerosol optical thickness, τ). At these 

wavelengths, the intensity of CORρ  is directly related to 

τ since the water-leaving reflectance wρ  can be 

neglected, while its spectral variation depends mostly 
sensitive on the aerosol scattering properties defined by 

the real refractive index rm  and to ν throughout the Mie 
theory. The objective of this first step is thus to find the 

combination of ν, τ and rm  that best match the 

measured CORρ . We trained dedicated MLP classifiers 

for two values of rm  (1.33 and 1.50) which allow to 

retrieve, for the given )(NIRCORρ  and viewing 

geometry, the three best pairs of (ν, τ) together with 
their associated probability level. The six best solutions 

(three pair ( ii τν , ) for each values of  rm ) are then 
retained to be used as different first guess for the 
second part of the inversion described below. This NIR 
inversion is summarized in figure 1. 

The second step of the method uses visible  



wavelengths (i.e., 412, 443, 490, 510, 555 nm) to 
retrieve both aerosol and oceanic optical properties. We 
developed a neuro-variational inversion to do so. This  

 
                Fig.1: Inversion in the NIR bands  
 
 
algorithm relies on three NNs (one for each component 

of CORρ , namely Aρ , t and Wρ ; see figure 2), which 
have been trained using a large set of direct 
atmospheric and oceanic radiative transfer simulations 
similar to that of Chomko and Gordon.  
 
 

 
 
 Fig.2: Direct Neural Network in the visible 
 
 

These NNs are thus capable to compute Aρ , t and 

Wρ  for a given wavelength in the visible and for the 
given viewing geometry, aerosol type and concentration, 
chlorophyll-a concentration (Chl a) and marine 
scattering parameter b°. b° is, with Chl a, a parameter of 
the direct oceanic reflectance  model. The principle of 
this neuro variational inversion is thus to invert this NN-
based direct model to retrieve the aerosol and marine 
parameters by minimizing the distance between 

observed and computed CORρ , taking into account the 

constraints which come from the NIR inversion. The 
control parameters of this inversion are the oceanic (b° 
and the chlorophyll-a concentration Chl-a) and 

atmospheric ( τν ,,, ir mm ) constituents (see Figure 3).  

The major advantage of this approach is that the  
variational method is easy to implement for direct model 
based on NNs, because the gradients (adjoints) are 
straightforward to compute (Bishop, 1995). The second 
advantage of this approach is that it would easily allow 
to take into account the spatial coherence of the 
parameters during the inversion.  
 

 
 
 Fig.3: Neuro-variationnal method in the visible 
 
3. TEST OF THE GLOBAL INVERSION 
 

All NNs were developed with the same type of NNs 
(Multilayered Perceptron, MLP) and were trained using 
the set of simulations of Chomko and Gordon for low-
absorbing aerosols. In this section, we show the 
respective accuracy of these NN models. 

The validation of the inversion in the NIR is done  
with 20000 different parameter's configurations of the 
database. When inverting the NIR spectra (first step of 
the method), the desired value ν and τ are retrieved 
87.3% and 97.6% of the time, respectively, whatever the 



value of rm . The first pair of ( 11,τν ) corresponds to 

the desired solution 85% of the time for rm =1.33 and 

reaches 89.2% for rm =1.50. These performances of 
the direct NIR inversion based on MLP classifiers are 
very satisfactory and enable to retrieve ν and τ with a 
sufficient accuracy to efficiently constrain the neuro-
variational inversion in the visible. This is of primary 
importance because the inversion in the visible is highly 
multi-valuated (i.e., several combinations of the control 
parameters can lead to a minimum during the inversion 
procedure). Appropriate initialisation of the aerosol 
parameters thus helps to avoid wrong inversion results. 

The direct radiative transfer m odel in the visible  
(see Figure 2) is modelled by the combination of three 
MLPs. The MLP are tested with 20000 differents 
configurations of aerosol properties, oceanic 
components and geometry of the view. The accuracy of 
each Direct Model (MLP) is satisfactory and leads to a 

good estimate of CORρ , as shown in Table 1. 
   RMSE Relative 

RMSE 
(%) 

R²(%)  

NN t   310*4.2 −      0.50 99.986 

NN wρ  510*69.3 −        1    1 

NN Aρ  310*16.1 −       6.9 99.98 

Table 1: Performance of the three neural network of the 
direct model 
 

The global inversion is tested with 1008 differents  
configurations of viewing geometry, optical aerosol 
properties and oceanic parameter for different 
wavelengths. As initial parameter for the variational 

method, we use the first values of ν, rm  and τ given by 
the first step of the method. Figure 4 displays the 

scatterplot of CORρ . 

 
Fig.4:  scatterplot of desired vs calculated CORρ  after 

inversion when we have a good first-guess (ν, rm  and τ 
given by the NIR bands). 

 For this experiment, the root-mean-square (RMS) error 

computed on the test set is  410*3.4 − . Table 2 

confirms that CORρ  is retrieved with a much better 
accuracy when a good first guess on aerosol 

parameters (ν, rm , τ) is provided by the NIR inversion. 
In term of retrieved parameters, we can see a 
dramatical improvements (Table 2 ). The chlorophyll-a 
concentration is retrieved with a relative RMS error of 

20% when ν, rm  and τ are known. 

 
Table 2: Rmse and relative rmse of the retrieved 
parameters with the neuro-variational inversion with a 

good  first-guess (ν, rm  and τ known) . 
 
4. QUALITATIVE RESULTS ON THE EAST COAST 
OF THE USA 

 
In this part we show the capacity of the algorithm to  

retrieve the spatial aspect and coherence of the pigment 
concentration. We chose the East Coast of the United 
States for the tests. The results are given for the case of 
low-absorbing aerosols, taking as first guess in the 
second part of the method the most probable couple (ν, 
τ) given by the first step. 

For the chlorophyll-a concentration, we compare  
our results with the SeaWiFS products (Gordon and 
Wang, 1994). We choose the 8 October 1997 for our 
test and we compare with pigment concentration 
retrieved with SeaWiFS algorithm. This day is 
characterized by a clear atmosphere.  

The SeaWiFS result is showed in figure 6. The  
retrieved pigment concentration with the neuro-
variational method is given in figure 5. This first results 
provided by our inversion show the ability to retrieve the 
spatial pattern of the pigment.  We are able to retrieve 

the caracterisctic pattern ( Ω form) of the pigment 
concentration. 

Concerning the values of the pigment 
concentration, our retrieved values are surestimated 
with regard to the values of SeaWiFS algorithms by a 
factor 2. For the open ocean, the mean values with our 

algorithm is of order of 0.4 mg. 3−cm , instead of 0.2 for 
SeaWiFS’s algorithms. Around the characteristic pattern 

of the pigment, we find of order of 1.5 mg. 3−cm , 

 
CORρ     im      b° [Chl] 

rmse 0.00049 0.00079    
0.075 

0.586 

rel 
rmse 
(%) 

0.88        ∞        20 19.7 



instead of  0.5 mg. 3−cm . There is an offset between 
the two method.  
 

 
 
fig.5: Chlorophyll concentration retrieved with the neuro-
variational inversion. 
 
 

fig.6: Chlorophyll concentration retrieved with the 
SeaWiFS algorithm for the second decade of April, 
1999. 
 
 
5. CONLUSIONS AND PERSPECTIVES 
 

We have developed a methodology to process the  
ocean color imagery. Retrieval of ocean constituents 
from these imagery is difficult due to the presence of the 
atmosphere, which represents a least 80% of the 
reflectance received by the sensor. 

   Our method is decomposed in two parts. First, the  
near infrared wavelength informations are used to give a 
first estimate of the aerosol optical properties through a 

direct NN inversion. These aerosol optical properties are 
retrieved with a sufficient accuracy to provide a robust 
first guess to the second part of the inversion, which 
enables to retrieve final oceanic and aerosol optical 
properties from visible wavelengths. This second step is 
called the neuro-variationnal inversion. To perform this 
inversion, we have modelled the oceanic and 
atmospheric radiative transfer equations with respect to 
the aerosol and oceanic parameters (the direct model) 
by using NN. The accuracy is better than 5% in term of 
root-mean-square error. The variationnal method 
consists in inverting the direct model to retrieve the 
aerosol and oceanic parameters. We minimize the 
distance between the observed reflectance at the top of 
the atmosphere and this calculated by the NN model, 
these parameters being the control variables. The 
calculation of the gradient of the cost function is 
straightforward due to the proprieties of the NN.  We 
can thus invert a whole image in one time to take into 
account the spatial coherence of the parameters. 

The inversion is tested with SeaWiFS Images for a  
clear sky day (October, 8th 1999) for the East Coast of 
Unite States. For clear sky condition, we retrieve the 
spatial coherence of the pigment concentration. In term 
of retrieved values, they are surestimated. These first 
results, which are only qualitative allows us to be 
confident with the method. 

The future work concerns the use of the spatially  
coherence of the aerosol optical properties, the choice 
of the best pair (ν, τ) for each pixel and the validation of 
the algorithm for very absorbing aerosols with regard to 
SeaWiFS products and Chomko and Gordon’s algorithm 
SOA  (Chomko and Gordon, 1998, 2001). 
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