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1.   INTRODUCTION * 
 
Great efforts have been taken to assess potential 

impacts of long term climate changes.  Large-scale 
General Circulation Models (GCMs) are, in principle, 
appropriate for predicting global climate changes, but 
they are less reliable in conducting impact studies in 
smaller spatial and temporal scales pertinent to most 
impact questions (Katz, 1996; Grotch and MacCracken, 
1991).  Most physically based response models, which 
are most suitable for impact studies, require inputs of 
daily weather as well as detailed soil, topography, 
vegetation, and management information.  Several 
modifications have been made to stochastic climate 
generators to generate long term daily weather, which is 
consistent with assumed future climate changes for use 
in impact studies (Katz, 1996; Wilks, 1992; Nearing, 
2000). 

Evaluation of natural resource responses to 
seasonal and interannual climate variations is of greater 
practical use than long term impact assessment.  
Agricultural production, especially dryland farming, 
which is planned at a seasonal scale, is largely 
dependent upon seasonal climate variations.  Seasonal 
climate patterns to a large degree dictate what cropping 
systems and management practices should be 
implemented to maximize productivity.  With reliable 
seasonal climate forecasts, agricultural production can 
be managed to take advantage of favorable climate 
conditions and to mitigate negative impacts of 
undesirable variations.  Undoubtedly for dryland 
farming, seasonal climate forecasts, such as National 
Oceanic and Atmospheric Administration (NOAA) long 
range experimental forecasts, provide a unique 
opportunity for minimizing production risks and 
maximizing productivity.  Physically based response 
models are the best tools available for this type of study.  
However, these models cannot be used unless 
seasonal or monthly climate forecasts are downscaled 
to daily weather series.  Stochastic daily weather 
generators may serve as an effective tool for bridging 
the gap. 

A number of stochastic daily weather generators 
have been developed to simulate the present climate for 
use with physically based hydrological and natural 
resource management models.  The CLIGEN model 
(Nicks et al., 1995), one of the two commonly used daily 
weather generators (Johnson et al., 1996), takes a 
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simple approach and generates each variable 
independently using monthly derived parameters.  
CLIGEN was primarily used to generate daily weather 
that statistically resembles the climates of the past 30 to 
100 years.  It has also been used to generate daily 
weather for ungauged areas through spatial 
interpolation of model parameters.   

Several evaluation and validation studies using 
various versions of CLIGEN have been reported in the 
literature.  Johnson et al. (1996) reported that monthly 
and annual precipitation statistics were adequately 
replicated by the model on six dispersed U.S. sites; 
however, daily precipitation amounts were not entirely 
satisfactorily simulated.   Headrick and Wilson (1997), 
who evaluated CLIGEN at five Minnesota locations, 
found that CLIGEN reproduced daily precipitation 
amounts and temperatures reasonably well.  Zhang and 
Garbrecht (2003) evaluated a later version of CLIGEN 
(v5.107) on four Oklahoma sites and found that the 
model simulated daily and monthly precipitation 
reasonably well for use in impact studies. 

Schneider and Garbretch (2002, 2003) have 
developed approaches for downscaling precipitation 
forecasts from three-month total precipitation to monthly 
values for specific locations.  Further downscaling from 
monthly values to daily series may be achieved by use 
of the CLIGEN model.  The objectives of this study are 
(i) to evaluate the ability of the CLIGEN model to 
reproduce typical dry, average, and wet year climate 
scenarios from historical data, and (ii) to assess 
hydrological and crop productivity responses to the 
generated climate scenarios using the WEPP model.  

 
2.  MATERIALS AND METHODS 

 
To test the ability of the CLIGEN model to simulate 

typical dry, average, or wet year conditions, a site 
(35.70 °N, 96.88 °W) located at Chandler, OK, which 
has 99 years of National Weather Service (NWS) daily 
weather data, was used.  For quality control, 21 years of 
the station data that had more than 7 consecutive days 
of missing precipitation were excluded.  Annual 
precipitation amounts of the remaining 78 years were 
used to generate a cumulative probability distribution 
curve.  The 25 and 75 percentiles in this curve, which 
corresponded to 742- and 1016-mm precipitation, were 
arbitrarily used to divide years into dry, average, and 
wet year categories, and there were 21, 37, and 20 
years in each corresponding category.  The daily 
precipitation amounts, and daily maximum and minimum 
temperatures of those years in each category (dry, 
average, and wet) were used to derive the CLIGEN 
input parameters for that year category for the Chandler 
station using a CLIGEN-support parameterization 



   

program.  The derived monthly parameters were then 
used to generate 100 years of daily weather for each 
category.  Hereinafter, the year category will specifically 
refer to the dry, average, and wet scenarios as 
described above.  

A t-test was used to test the equality of means of the 
generated and historical daily maximum and minimum 
temperatures on the site.  A nonparametric Wilcoxon 
rank sum test that is applicable to any distributions was 
used to test the null hypothesis that the two populations 
of measured and generated monthly precipitation are 
identical. 

Four Water Resources and Erosion (WRE) 
watersheds established in 1976 at the Grazinglands 
Research Laboratory, El Reno, Oklahoma were used to 
calibrate the WEPP water balance and plant growth 
sub-models.  The each watershed is 80 m wide and 200 
m long.  The longitudinal slopes of the watersheds are 3 
to 4%.  Soils are predominantly silt loam.  Sand, silt, 
clay contents in the top 10-cm soil layer are about 23, 
56, and 21%, respectively.  Clay content increases with 
depth to about 40% at 1-m depth.  The watersheds were 
cropped into winter wheat under different tillage and 
cropping systems since 1979.  The above ground 
biomass at harvest and grain yield were measured.  
Daily precipitation was recorded by four rain gauges on 
the perimeter of the watersheds.  An H-flume was used 
to measure runoff rates for each watershed.  A neutron 
probe was used to measure soil moisture (up to 1.3 m 
deep) at three locations in each watershed in 
approximately 10-day intervals.  Measured climate, soil 
properties, and actual tillage operations and cropping 
systems were used to build the WEPP climate, slope, 
and management input files.  Measured runoff, soil 
moisture, and crop data were used to validate or 
calibrate model parameters.  Saturated hydraulic 
conductivity of the infiltration sub-model, and energy-to-
biomass conversion ratio and harvest index of the crop 
sub-model were the key calibration parameters. 

The calibrated WEPP model along with the soil and 
slope input files compiled for the WRE watersheds was 
run for 100 years under the three typical climate 
scenarios generated for the Chandler site.  The 
simulation was conducted as if the WRE watersheds 
were relocated to the Chandler site.  For simplicity, a 
generic one-year rotation of conventionally tilled winter 
wheat was used.  In the simulation, winter wheat was 
planted on October 15 and harvested on June 20 each 
year, and the field was moldboard plowed on July 1 and 
disked on the first day of August, September, and 
October.  Soil moisture in each soil layer was reset in 
the model to 40% or 70% of its saturation level on 
September 1 each year.  Because each year-
occurrence is a possible outcome of the year category 
in question, initial soil moisture storage was reset to the 
same level each year.  The 45-day window period 
between the moisture resetting and planting was used 
to allow soil moisture to adjust for the dry, average, and 
wet year conditions.  Output of crop yield and selected 
hydrologic variables were compared between the dry, 
average, and wet year categories.           
 

3.  RESULTS 
 
3.1 Precipitation 

 
The CLIGEN model was used to generate daily 

weather of three different year categories (dry, average, 
and wet) on the Chandler site.  The generated and 
historical monthly mean precipitation are plotted in 
Figure 1, which indicated that CLIGEN was able to 
adequately reproduce the seasonal sequences of the 
monthly mean precipitation.  Results were also tested 
by the Wilcoxon rank sum test, and the test results 
showed that CLIGEN reproduced monthly precipitation 
distributions reasonably well for each month and year 
category, with the minimum critical P value greater than 
0.3.  For some reason, January and August, compared 
with the other months, were less well reproduced by 
CLIGEN for all the three year categories. 

 
3.2 Temperature   

 
A t-test was used to test monthly mean temperatures 

for each year category.  The CLIGEN model reproduced 
monthly mean maximum temperature very well for each 
month and year category.  More than 80% of the P 
values were greater than 0.9, with the lowest value of 
0.79.  Compared with the maximum temperature, 
monthly mean minimum temperature was less well 
replicated, because the range check that forced daily 
minimum temperature to be lower than daily maximum 
temperature on any given day.  However, none of the 
tests was significantly different at the P=0.01 level.  
CLIGEN tended to reproduce mean minimum 
temperature better in summer periods (e.g., June, July, 
and August) when temperature was higher.  Neither the 
monthly mean maximum temperature nor minimum 
temperature of both NWS-historical and CLIGEN-
generated data showed considerable departures 
between the three year categories (Figure 2).  However, 
discernable departures were exhibited by both NWS-
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Figure 1.  Seasonal distribution of NWS-historical 
and CLIGEN-generated monthly mean precipitation 
for the wet, dry, and average year categories. 



   

historical and CLIGEN-generated data from June to 
September, where the monthly mean temperatures,  
especially the maximum, decreased from dry to average 
to wet years.  Results indicated that CLIGEN was able  
to correctly capture small departures of monthly mean 
temperatures between the year categories. 

 
3.3 Simulated Hydrological And Crop Responses 

 
Predicted growing-season surface runoff (Q), plant 

transpiration (Ep), soil evaporation (Es), deep 

percolation (Dp), and soil moisture storages at both 
planting and harvest all increased with total precipitation 
or year category (Table 1).  As precipitation increased, 
predicted percent runoff and deep percolation relative to 
total precipitation increased, but percent Ep decreased.  
The trends of these predicted relative changes were 
more profound when initial soil moisture was set to 70% 
as opposed to 40%.  The year-to-year variation of 
WEPP-simulated results, as indicated by the coefficient 
of variation (CV), was approximately 23% for 
precipitation, 16% for Ep, 30% for Es, 7% for soil 
moisture storages at both planting and harvest, and 
26% for grain yield.  These CVs were largely 
independent of the year categories and initial soil 
moisture status.  However, the CVs of predicted surface 
runoff and deep percolation increased dramatically from 
wet to average to dry years, indicating increased 
variability or uncertainty in dry years. 

Predicted percent increase of selected parameters 
per 1% increase of precipitation (P), computed from 
mean values of 100-year WEPP simulation run under 
the three year categories, are given in Table 2.  Percent 
runoff increase was much greater from average to wet 
years than from dry to average years.  Initial soil 
moisture storage increased percent runoff, but the 
increase was greater in wetter years.  Predicted percent 
Ep increase per 1% increase of P was greater in wetter 
years because of the alleviation of plant water stress.  
Predicted percent Ep increase was dampened by high 
initial soil moisture storage, which increased percent 
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Figure 2.  Seasonal distribution of (A) NWS-historical 
and (B) CLIGEN-generated monthly mean maximum 
and minimum temperatures for the wet, dry, and 
average year categories. 

Table 1.  Mean ± one std of WEPP-simulated growing-season precipitation (P), runoff (Q), plant transpiration 
(Ep), soil evaporation (Es), deep percolation (Dp) total soil water at harvest (SWh) and at planting (SWp), and 
wheat grain yield for three year categories*. 
Year 
group 

 
P 

 
Q 

 
Ep 

 
Es 

 
Dp 

 
SWh 

 
SWp 

 
Yield 

 mm mm mm mm mm mm mm kg/ha 
 Initial soil moisture saturation = 40% 
Dry 426±102 25±30 405±67 69±22 3±9 300±18 371±27 1596±422 
Average 578±135 52±46 481±84 95±27 17±21 320±23 383±27 2007±570 
Wet 751±166 108±93 572±83 104±30 49±30 342±30 419±41 2452±614 
 Initial soil moisture saturation = 70% 
Dry 426±102 25±30 421±64 70±22 46±24 320±15 450±25 1722±426 
Average 578±135 52±46 486±84 96±28 79±32 331±21 461±26 2046±572 
Wet 751±166 111±96 577±83 105±32 109±35 345±28 490±35 2466±605 
*Lateral soil water discharge was zero for all cases. 

Table 2.  Percent increase per 1% increase of 
precipitation (P) during wheat growing season, 
computed from mean values of 100-year simulation 
run under three climate scenarios.  (Sat=initial 
saturation level, Q=runoff, Ep=Plant transpiration, 
Es=soil evaporation, Dp=deep percolation)   
 Dry to average Average to wet 
 % %  % % 
Sat 40 70 40 70 
Q 2.96 2.99 3.72 3.87 
Ep 0.52 0.43 0.64 0.63 
Es 1.05 1.05 0.30 0.32 
Dp 11.79 2.04 6.14 1.26 
Yield 0.72 0.53 0.75 0.69 



   

runoff and deep percolation.  Percent Es increase was 
little affected by initial soil moisture, and was largely  
reduced in wetter years due to better canopy cover.  
Percent Dp increase was greater when initial soil  
moisture and precipitation were lower.  This is simply 
because the deep percolation in dry years was close to 
zero under low initial moisture conditions.  Similar to Ep,  
predicted percent yield increase was greater in wetter 
years under both initial moisture conditions because of 
reduced plant water stress.  However, the greater 
percent increase in grain yield occurred for the lower 
initial soil moisture conditions.  This is because larger 
portion of precipitation increase would be taken up by 
Ep rather than by runoff and deep percolation as was for 
the higher initial soil moisture conditions.  Another 
reason is that grain yield was generally lower in drier 
years, especially when initial soil moisture was low.  
This was clearly demonstrated in Figure 3.  The initial 
soil moisture storage considerably affected predicted 
grain yield in dry years; however, the effect diminished 
as total precipitation increased.  Figure 3 reflects not 
only predicted grain yield levels but also their associated 
probabilities for the year category and initial soil 
moisture conditions.  This information is critical for 
assessing production risks associated with a particular 
climate forecast and available soil moisture condition.   

 
4.  DISCUSSION AND IMPLICATIONS 
 

Several studies have concluded that the CLIGEN 
model replicated daily and monthly precipitation and 
daily temperatures reasonably well (Headrick and 
Wilson, 1997; Johnson et al., 1996; Zhang and 
Garbrecht, 2003).  This study showed that seasonal 
sequences of monthly mean precipitation were well 
simulated for the three year categories by CLIGEN 
(Figure 1), indicating that CLIGEN may be capable of 
reproducing sequences of monthly mean precipitation of 
a particular seasonal climate forecast.  As mentioned 
earlier, CLIGEN is a monthly parameterization model, 

and generates daily weather independently for each 
month.  This simplifying approach works to its 
advantage and provides the flexibility needed to 
reproduce any seasonal sequence of monthly mean 
precipitation, and therefore is particularly suitable for 
assessing impact of seasonal and interannual climate 
variations derived from seasonal climate forecasts using 
physically based response models.  

Impact of interannual or seasonal climate variations 
can be simulated by a spectrum of scenarios of 
anticipated climate forecasts.  Precipitation distribution 
generated for a climate forecast is propagated through 
the deterministic WEPP model, and the resulting 
probability distribution of grain yield is then generated in 
a Monte-Carlo sense.  The probabilistic nature of the 
generated grain yields lays the foundation for 
developing risk-based management tools.  This concept 
has actually been demonstrated in Figure 3.  In this 
example, at the 70% initial saturation level, there is a 
50% chance that wheat grain yield would be between 
1.37 and 1.97 Mg/ha for any year under a given dry year 
scenario and be between 2 and 2.88 Mg/ha for any year 
under a wet year scenario. 

The NOAA seasonal forecasts are probabilistic in 
nature and are made in the form of probability 
anomalies for the upcoming month and for three-month 
periods out to a year in advance for both precipitation 
and air temperature.  Schneider and Garbrecht (2002, 
2003) have developed procedures to downscale the 
aggregated precipitation of three-month forecasts to 
monthly probability distributions for a particular location 
of interest.  The downscaled monthly distribution, say for 
January, can be reconstructed with the historical 
monthly precipitation data of the location.  The daily 
precipitation records of the months used in the 
reconstruction will be used to derive daily precipitation 
statistics using the CLIGEN’s parameterization program.  
This can be done independently for each month.  The 
derived parameters for each month will then be used to 
generate daily time series.  This approach not only 
provides an innovative means of downscaling monthly 
forecasts to daily time series but also preserves the 
monthly probability distribution of the forecasts.  More 
over, the proposed approach is also applicable to 
downscale the NOAA air temperature forecasts.  
However, because the monthly mean maximum and 
minimum temperatures were not much different 
between the wet, dry, and average year categories as is 
shown in Figure 2, the downscaling of air temperature 
appears to have minimal impact on crop productivity 
forecasts at least for central Oklahoma.  

 
5.  CONCLUSIONS 
 

The CLIGEN model reproduced monthly 
precipitation and daily maximum temperature relatively 
well.  The CLIGEN model was capable of reproducing 
not only monthly precipitation distribution of individual 
months but also seasonal sequences of monthly mean 
precipitation.  The simplifying approach of monthly 
parameterization scheme used in CLIGEN provides the 
flexibility needed to reproduce seasonal sequences of 
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 Figure 3.  Probability distribution of WEPP-
simulated winter wheat grain yield at two initial soil 
moisture levels and for the wet, dry, and average 
year categories. 



   

monthly mean precipitation.  This makes the CLIGEN 
model particular suitable for impact assessments of 
seasonal climate variations derived from the 
probabilistic type of forecast using response models.  
Impact of interannual climate variations can be 
simulated by a spectrum of year scenarios.  Such 
application circumvents the stationarity assumption, 
which is, otherwise, undesirable for long-term climate 
change simulation. 

Physically based response models are the best 
available tools for impact assessments of seasonal and 
interannual climate variations.  The NOAA seasonal 
forecasts provide a unique opportunity for simulating 
impacts using response models.  The CLIGEN model 
has the potential of bridging the gap between monthly 
forecasts and daily weather requirement by many 
response models.   

 Hydrologic and crop responses predicted by WEPP 
agreed reasonably well with the known trends.  
Predicted runoff, plant transpiration, and deep 
percolation increased with total precipitation.  However, 
the rates of the increase were higher for runoff and plant 
transpiration but lower for deep percolation in wetter 
years.  Predicted crop yield was sensitive to soil 
moisture storage at planting, especially in dry years.  
Percent increase in predicted wheat grain yield per 1% 
increase in precipitation, on average, ranged from 0.5 to 
0.75%, varying with initial soil moisture storage and 
precipitation levels. 
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