1. INTRODUCTION

The importance of the motion of air masses at all scales of atmospheric circulation has brought substantial development of the Doppler radar technology in the field of precipitation monitoring. Although techniques have been developed in the last two decades for ground-based and airborne Doppler weather radars (Doviak and Zrnic, 1993 and Hildebrand and Moore 1990), they do not fully address the issues pertaining to spaceborne radars. These unique issues arise from the downward viewing geometry with a fast moving (i.e., \( v_s \equiv 7 \, \text{km/s} \)) for Low Earth Orbiting (LEO) satellites orbiting platform and a relatively large volume of resolution (e.g., 2km footprint radius and 250m range resolution).

The spaceborne precipitation radar studied in this paper is cross-track scanning and with a small scan angle \( \beta \) (e.g., \( \beta < 5 \, \text{deg.} \)). It will be referred to as Nadir-looking Doppler Precipitation Radar (NDPR). This viewing geometry allows to measure the average vertical motion \( v_R \) of the hydrometeors by calculating the first moment of the measured Doppler velocity spectrum. Such measurements, in turn, allow to estimate the vertical wind and, in particular, its gradient in the vertical direction which is a fundamental quantity to derive the vertical fluxes of latent heat.

Measurements of mean Doppler velocity at off-nadir angles are affected by contributions from horizontal winds. As thoroughly discussed in Amayenc et al. (1993), these contributions could be identified and removed only through a Doppler radar system with multiple-angle viewing geometry or by adopting some assumptions on the continuity of the velocity field. However, under the assumption of small \( \beta \), these contributions are in general small and can be neglected.

Measurements of the rainfall average vertical velocity \( v_R \) are affected by several errors. These errors are briefly described here, and discussed in depth in the remainder of this paper.

- **Errors of the spectral moment estimator (SME)**: The estimate \( x_m \) of the m-th spectral moment calculated from the returns of M radar pulses is a random variable typically described through its expected value \( <x_m> \) and standard deviation \( \sigma(x_m) \). These two statistics depend on the characteristics of the random process associated with the rainfall radar signal and on the performance of the specific SME algorithm adopted to calculate \( x_m \). In particular, when the signal has a Gaussian Doppler spectrum, the statistics of \( x \) can be calculated from the following parameters: a) the normalized width \( w_N = w \lambda / (\lambda \, \text{PRF}) \), where \( w \) is the Doppler velocity spectral width of the signal, \( \text{PRF} \) is the radar Pulse Repetition Frequency and \( \lambda \) is the radar operating wavelength, b) the Signal to Noise Ratio (SNR), c) the normalized mean Doppler velocity \( v_N = v 2 / (\lambda \, \text{PRF}) \) and, d) the number of samples (M). Performances of the most widely used SME algorithms for a wide range of these parameters are discussed in Section 2. In Section 3, it is shown that, when observing a homogeneous rain field, the Doppler velocity spectrum can be approximated by a Gaussian. Also, the criteria to calculate the spectral parameters from the NDPR configuration parameters are here described.

- **NUBF-induced bias**: when the radar is observing a non-homogeneous rainfall field, the contributions to the Doppler spectrum from different portions of the resolution volume are unevenly weighted. Since each spectral contribution is subject to a Doppler shift proportional to the along-track
displacement of the corresponding portion with respect to the cross-track plane, the inhomogeneous weighting modifies the spectral shape and induces a bias in the estimates of vertical velocity. The NUBF-induced bias is discussed in Section 4.

- **Pointing-induced bias**: when the radar viewing angle is offset with respect to the cross-track plane, a bias in vertical velocity estimates proportional to the offset angle \( \alpha \) is observed.

- **Errors induced by the surface-clutter**: the surface backscattered power can contaminate the radar return even for volumes of resolution that do not (nominally) intersect the surface. Such clutter is received through the antenna sidelobes and/or through the range weighting function (because of the finite receiver bandwidth). The spectrum of the clutter signal can assume different shapes depending on the geometry of the problem. The impact of the surface clutter is discussed in Section 5.

2. PERFORMANCES OF SPECTRAL MOMENTS ESTIMATORS

The two most widely used categories of algorithms for Spectral Moments Estimators (SME) of weather radar signals are the Pulse Pair (PP) processing and the spectral analysis through Discrete Fourier Transform (DFT). In recent studies their performances have been analyzed focusing on their application to spectra measured by NDPR (Tanelli et al. 2002). The results of these studies are summarized here for 4 DFT-based SME algorithms. The mean velocity estimate is calculated as:

\[
\hat{v} = -\frac{\lambda}{2MT_S} m_0 = -\frac{\lambda}{2MT_S} \left\{ \frac{m_0^* + 1}{(S_S + S_N) - \hat{S}_N} \right\} \\
= -\frac{\lambda}{2MT_S} \left\{ \sum_{m=m_0}^{M/2} (m-m_0^*) \left\{ \bar{p}_{\text{mod}(m)} - \bar{n}_{\text{mod}(m)} \right\} \right\}
\]

where \( S_S \) and \( S_N \) are the signal and noise power, respectively, \( \hat{S}_N \) is the estimated mean noise power, \( \bar{p}_m \) is m-th line of the power spectrum as calculated through DFT of M complex voltage samples (periodogram), \( \bar{n}_m = \hat{S}_N / M \) is the estimated noise spectral density, and \( m_0^* \) is the number of a specific frequency bin in which the initial estimate \( \alpha \) of the mean spectral frequency is made (i.e., \( m_0^* = \alpha M / \text{PRF} \)).

The four algorithms are different in their ways of handling of noise and strategy for obtaining the initial guess \( \alpha \). The first algorithm, referred to as DFT-Z, assumes \( m_0^* = 0 \). It does not remove any white noise contribution (i.e., \( \hat{S}_N = 0 \) in (1)), which makes it a biased estimator at low SNR’s. The second algorithm, referred to as DFT-ZN, also assumes \( m_0^* = 0 \) but it removes the nominal power (i.e., \( \hat{S}_N = S_N \)) in order to eliminate the bias due to white noise. However, as shown by Sirmans and Bumgarner (1975), at low SNR’s the standard deviation of (1) for DFT-ZN is significantly higher than that for DFT-Z.

The third algorithm, referred to as DFT-M, was suggested by Zrnic (1979). It assumes \( m_0^* \) to be equal to the number of the frequency bin which has the largest power (i.e., \( m_0^* : \bar{p}_{m_0^*} = \max(\bar{p}_m) \)), and it does not remove any white noise contribution. For narrow spectra (e.g., \( \lambda_N < 0.1 \)) and large \( M \) (e.g., \( M \gg 1000 \)), this algorithm provides unbiased estimates of the first spectral moment with the corresponding standard deviations comparable to those obtained by DFT-Z. However, this algorithm is more sensitive to \( w_N \) than DFT-Z and DFT-ZN (Tanelli et al. 2002b).

The fourth algorithm, referred to as ‘two-step’ DFT algorithm (DFT-2), was recently introduced by Tanelli et al. (2002) to provide better performances for spaceborne applications. In the first step of this algorithm, (1) is applied with \( m_0^* = 0 \) and \( \hat{S}_N = S_N \) to obtain a first velocity estimate \( \hat{v}^{(1)} \). \( \hat{S}_N \) is then updated by setting it equal to the minimum of the smoothed periodogram. In the second step, a refined velocity estimate \( \hat{v}^{(2)} \) is obtained through (1) with \( m_0^* = \hat{v}^{(1)} / (\lambda / 2MT_S) \) and with the updated \( \hat{S}_N \). This second step can be repeated until \( |\hat{v}^{(n)} - \hat{v}^{(n-1)}| \) falls below a specified threshold. In general, this algorithm is capable of providing unbiased estimates with standard deviations comparable to DFT-Z. For mean vertical velocities \( v_c \) close to the Nyquist limit \( v_n = \text{PRF} / 4 \), it shows a multimodal distribution of the mean velocity estimate, with the secondary modes appearing at \( v_c \pm 2v_m \) and \( v_c \pm 3v_m \). However, these secondary modes are easily removed by checking if a) \(|\hat{v}| > v_m\).
Figure 1: Bias on normalized mean velocity estimates for 5 SME algorithms. In the simulations $M=64$.

Figure 2: Normalized standard deviation of normalized mean velocity estimates for 5 SME algorithms. The standard deviation is scaled by $M^{0.5}$. Such quantity is invariant on $M$ for DFT-Z, DFT-ZN and PP.
to detect if the estimate converged to an aliased replica $v_c \pm 2v_m$, or b) if

$$n = \sum_{m=m_0}^{n} \frac{1}{4} \left( \sum_{m=m_0}^{n} \left( \tilde{p}_{mod,\hat{m}}(m) - \tilde{N}_{mod,\hat{m}}(m) \right) \right) < \frac{1}{2} \sum_{m=-M/2}^{+M/2} \left( \tilde{p}_m - \tilde{N}_m \right)$$

to detect if the estimate converged to $v_c \pm v_m$ in the low power density region of the spectrum.

Estimates of the mean velocity of Gaussian spectra simulated as in Tanelli et al. (2002b) were calculated through these four algorithms and through PP (contiguous pairs). The bias and standard deviation of these estimates are shown in Figs. (1) and (2), respectively. While the estimates of DFT-Z and DFT-ZN are heavily biased by the aliased portions of the spectrum, those obtained through DFT-M, DFT-2 or PP are unbiased for a wide range of $w_N$ and $v_N$. Among these three, PP shows the smallest standard deviation for low SNR’s and small $w_N$. DFT-2 shows the smallest standard deviation for high SNR’s and $w_N \geq 0.1$, and DFT-M shows performances between those of PP and DFT-2.

Note that SME performances degrade rapidly when $v_N$ exceeds a threshold that depends on both $w_N$ and the specific SME algorithms used. It was found that such threshold can be approximated by $0.5 - A_R w_N$ where $A_R$ is equal to 1 for DFT-2 and to 1.65 for DFT-M. One can consider as the 'nominal' performances of the algorithm those calculated for $|v_N|$ lower than this threshold.

3. RADAR DESIGN AND DOPPLER SPECTRUM PARAMETERS

In this Section the four parameters of the Doppler spectrum that affect the performance of mean velocity estimators are discussed.

3.1 Normalized Doppler width

For NDPR, the total variance $w^2$ of the spectrum is calculated as the sum of the variances determined by four different causes of spread (Amayenc et al. 1993):

$$w^2 = w_D^2 + w_T^2 + w_K^2 + w_S^2 \quad (2)$$

$w_D$ is due to the spread of terminal fall velocities of hydrometeors of different size. In general, it is determined by the drop-size distribution (DSD) and by the choice of radar operating wavelength. However, it was found that its value is typically $w_D \equiv 1$ m/s. The Doppler spectrum associated with the terminal fall velocities is often approximated with a Gaussian, although it is actually slightly skewed, and its mean velocity is typically in the 1 to 7 m/s range.

$w_T$ is the broadening due to air turbulence. Values for $w_T$ of 1 and 4 m/s are associated with standard and extreme turbulence, respectively. Such broadening is well approximated by a zero-mean Gaussian spectrum.

$w_K$ is the broadening due to wind shear. Its contribution has been widely studied and a comprehensive discussion of the effect of wind shear for an NDPR with circularly symmetric antenna pattern can be found in Kobayashi (2002), whence the following expression is obtained:

$$w_K^2 = \frac{\theta_3^2 h_S^2}{4a} \left( w_{Kz}^2 + w_{Ky}^2 + w_{Kx}^2 \right) + w_{Kz}^2 \quad (3)$$

where, $\theta_3$ is the antenna 3dB width, $h_S$ is the satellite altitude, and

$$w_{Kx}^2 = \left( u_{ix} / h_S + K_{xy} \right)^2$$
$$w_{Ky}^2 = \left( u_{iy} / h_S + K_{yx} \right)^2$$
$$w_{Kz}^2 = \left( \frac{0.35 K_{zz} c \tau_{pulse}}{2} \right)^2$$

where $u_i = u_{i0} + jK_{iy}$ with $i=x,y,z$ indicates the direction of the wind component and $j=x,y,z$ indicates the gradient component direction, $c$ is the speed of light and $\tau_{pulse}$ is the radar pulse duration. The parameter $a$ depends on approximation used for the antenna pattern (e.g., $a=2.6$ for the aperture type approximation used in Kobayashi et al. (2002), while $a=4\ln(2)$ $\equiv 2.77$ for a Gaussian approximation as in Amayenc et al. (1993)). Note that (4) includes also the broadening effect of the average wind components across the beam (i.e., $u_{i0}$ and $u_{j0}$), this is due to the fact that the associated radial velocity varies with the angle respect to the radar pointing direction. In general, it is found that $K$ ranges between 0.001 s$^{-1}$ to 0.01 s$^{-1}$.

$w_S$ is the broadening due to the platform motion. Its effect can be immediately understood through the formalism used for calculating the wind shear by noting that the apparent average wind velocity should be used in (3) (i.e., $u_{i0}$ should be replaced by $u_{i0} + v_S$, where $v_S$ is the satellite velocity) and therefore:

$$w_S^2 = \frac{\theta_3^2 v_S^2}{4a} \quad (5)$$
In general, all these causes of spread must be accounted for. However, the following considerations help to simplify the problem:

- Given a $v_s$ of 7 km/s or higher, typical for a Low Earth Orbiting (LEO) satellite, the term $w_S$ prevails over $w_{K_{xz}}$ and $w_{K_{xy}}$ and, in particular, for low to medium wind shear ($i.e., K<0.005$ s$^{-1}$) the latter two are negligible with respect to $w_S$ for any choice of $\theta_2$.

- Assuming that the wind shear has equal sharing among the orthogonal components, the contribution of $w_{K_{xy}}$ is negligible with respect to $w_{K_{xz}}$ and $w_{K_{xy}}$ for small $\theta_2$. Furthermore, $w_{K_{xy}}$ is always negligible with respect to $w_S$.

- Spaceborne atmospheric radars are typically required to have a range resolution of 500 m at least. Therefore the contribution of $w_{K_{xz}}$ is not negligible with respect to $w_{K_{xz}}$ and $w_{K_{xy}}$ only for very small antenna footprints ($i.e.,$ for $\text{IFOV} \equiv \theta_2 \theta_5$, comparable to 0.35 cm$^2$ $\Rightarrow a^0.5 \approx 500m$).

In general, we have that the Doppler width is determined mainly by the $w_S$ term for $\theta_2^2 >> (w_T 2 a^0.5 /v_S)^2$. That is, for $\theta_2 > 0.15^\circ$ one has that $w \equiv w_S$ independently of the amount of turbulence, wind shear and spread of terminal velocities. For smaller beamwidths, instead, the contribution of the three terms depending on the characteristics of the rainfall field cannot be neglected, and, in general, a varying $w$ will be observed by NDPR.

Furthermore we can consider the approximation $\theta_3 \equiv \gamma \lambda /D$, where $D$ is the antenna diameter and $\gamma$ is typically ~1.25. It follows that, given a choice of antenna size, the contributions of $w_S$ and $w_K$ to the normalized spectral width $w_N$ do not depend significantly on $\lambda$. On the other hand, the contribution of $w_D$ and $w_T$ (which do not depend on $\theta_3$), tend to create broader normalized spectra for smaller $\lambda$.

Independently of the aforementioned issues in the choice of antenna size and operating wavelength, a simple criterion to obtain small $w_N$ would be to adopt a high PRF. However, the PRF upper bound is determined by the thickness of the atmosphere layer to be monitored. For precipitation measurements at a scanning angle $\beta$ we have:

$$\frac{1}{PRF} = T_s \times \frac{2H}{c \cos(\beta)}$$

where $H$ is the extent of range interval with non-zero backscatter, in general it can be assumed to be 20 km or less for spaceborne radar measuring precipitation (which accounts also for the presence of the mirror image return). Therefore, PRF up to 8000Hz could be assumed for scanning strategies with small $\beta$. However lower PRF must often be adopted because of the practical problems arising from the long and non-constant slant range of a spaceborne down-looking radar and/or from the choice of using long radar pulses to apply pulse-compression techniques.

Indeed the condition (6) poses a serious obstacle for obtaining low $w_N$. In fact, while an antenna of 10m could provide spectra with $w_N$ similar to that of airborne radars, obvious economical and technological requirements lead to the choice of smaller antennas, whenever possible. On the other hand, a 2 m antenna such as that of the TRMM Precipitation Radar (PR) or the one planned for the dual frequency precipitation radar of the GPM mission, even if $PRF = 8000$ kHz is considered, would generate spectra with $w_N > 0.3$, unsuitable for accurate estimates of any spectral moment. Therefore, antenna diameters between 3 and 6 meters are therefore considered as the region where to look for the optimal trade-off, for the purpose of radar system and mission design. The corresponding range of $w_N$ is between 0.1 and 0.3.

One efficient way to overcome the constraint imposed by (5) is to adopt a pulse polarization diversity strategy as described by Kobayashi (2002). However, this choice increases the technological requirements and is subject to some limitations in its use, among them we mention the fact that DFT processing could not be applied, hence narrowing the choice of SME to the PP category.

### 3.2 Signal to Noise Ratio

The power received at the receiver of a radar can be calculated through the well-known Probert-Jones equation. The radar system parameters that affect its value are the peak power and pulse duration. They have little impact on the issues
pertaining vertical velocity estimation other than the obvious effect on SNR. It can only be mentioned for completeness that a longer $\tau_{\text{pulse}}$, while increasing the SNR, also extends the range interval affected by surface clutter and increases the usually negligible term $w_{\text{ccl}}$ in (4).

Spaceborne precipitation radars currently operating or under development guarantee a minimum detectable reflectivity of 17dBZ or less. This means that SNR $>$ 0dB are generally expected when observing rainfall.

In the analysis of the performances of SME algorithms, the noise spectrum has been assumed white to model the radar system thermal noise.

3.3 Normalized mean Doppler velocity

As shown in Section 2, the mean Doppler velocity of the spectrum, which is the object of the estimator, in turn affects the performances of a SME. The reason being that the impact of aliasing becomes dramatically evident when $v_n$ approaches the Nyquist limit of 0.5. This consideration should be taken into account when calculating the maximum vertical velocity that can be calculated with the nominal accuracy of the SME algorithm (see final notes of Section 2).

In practice, average rainfall vertical velocities are generally smaller than $v_{\text{Rmax}} = 20$ m/s in modulus (larger values can occur only for particularly strong up- and down-drafts which usually have very small extension with respect to the radar IFOV). Therefore, one should impose that $(0.5 - A_{\text{R}} W_{\text{NL}}) \times \text{PRF} \frac{\lambda}{2} > v_{\text{Rmax}}$ m/s. When $\theta_3 > 0.15^\circ$ this condition can be reduced to

$$\frac{\text{PRF}}{4} - \frac{v_{\text{Rmax}}}{\lambda} > A_{\text{R}} v_{\text{s}} \gamma \frac{\sqrt{2} \alpha}{D}$$

As it will be discussed in Section 5, the impact of velocity offsets caused by errors in the radar pointing angle should be included in $v_{\text{Rmax}}$ for robust system design.

3.4 Number of samples

In order to reduce uncertainty on the power spectrum, a sufficiently large number of pulses must be integrated. In Doppler processing, large $M$ also improves the Doppler resolution $v_{\text{d}} = (\lambda/2)/(MT_3)$. A general limitation to the maximum $M$ is imposed by setting the required horizontal spatial resolution, in fact the resolution in the along-track direction is $\text{IFOV}_v = I\text{IFOV} + v_M M \text{PRF}$.

If the observed rain process is not stationary during the observation time $T_r = M/\text{PRF}$, the Doppler spectrum is distorted due to assembly of the shifting of Doppler velocities of individual rain particles. A reasonably optimal $T_r$ can be found by imposing that the Doppler velocity resolution $v_{\text{d}} = \text{PRF} \frac{\lambda}{2(MT_3)}$ be equal to the Doppler velocity shift $v'$ during $T_r$ (i.e., $v' = v_s T_r / h_0$):

$$T_r = \frac{1}{v_s} \sqrt{\frac{\lambda h_0}{2}}$$

(8)

If Condition (8) is not satisfied, and a rainfall field inhomogeneous within the field of view is observed, a distortion is introduced in the Power spectrum. As a consequence the performances of SME algorithms will be degraded. Furthermore, this distortion will affect also the performances of more advanced spectral analysis techniques such as the one introduced in the next Section.

4. NUBF-INDUCED BIAS

As recently demonstrated by Tanelli et al. (2002), inhomogeneities in the rain field within the radar volume of resolution cause a shape distortion of the Doppler spectrum and an offset between the mean Doppler velocity and the actual mean vertical velocity of the hydrometeors. Such offset was found to be proportional to the reflectivity gradient in the along-track direction and it can reach values of several m/s. As a consequence a bias equal to the offset affects velocity estimates obtained by means of any SME algorithm when NUBF occurs.

In order to remove such bias, the Combined Frequency Time (CFT) technique has been developed (Tanelli et al. 2001) and it is briefly recalled here. CFT aims at removing the NUBF-induced bias from the estimates of rainfall average vertical velocity by estimating the first moment of the tracks of the rainfall distributed targets projected in the along-track satellite position / Doppler velocity (x-v) plane. Figure 3 shows a sequence of periodograms measured by a Doppler radar for a fixed range cell. Each periodogram is calculated from the DFT of $M = 64$ complex voltage samples. Therefore one periodogram is obtained in the time $T_r$, which corresponds to an along-track displacement of the satellite $\Delta_x = v_s M \text{PRF}$. The example in Fig. 3 is obtained from a typical NUBF situation where the power spectrum deviates substantially from a Gaussian shape. On the other hand, one can analyze the spectral density lines generated by a specific target at different times (i.e., the ‘target tracks’ along lines with slope $q_{\text{tr}} = v_s/h_0$ in the x-v plane). It has been demonstrated that, for NDPR,
the target tracks can be well approximated by a Gaussian (from the shape of the antenna pattern), regardless of NUBF. The first moment estimated through a DFT based SME of each target track provides accurate information on both the target position when the target is in the antenna maximum gain direction, and the true vertical velocity of the target. The last step of the CFT technique consists in generating a uniformly spaced horizontal profile of vertical velocity through weighted moving average of the of target velocities obtained for each target track. The moving average ‘along-track window’ is Gaussian shaped with width $\Delta x$.

Results as the one shown in Fig. 4 demonstrate that CFT is able to correct the bias introduced by NUBF.

5 POINTING-INDUCED BIAS

The pointing-induced offset in Doppler velocity is $v_p = i_x i_x v_S$ where $i_x$ is the along-track direction and $i_v$ is the radar pointing direction. For a nadir-pointing or a cross-track scanning atmospheric radar with no pointing error in the forward-aft direction, this term disappears ($i.e., i_v \cdot i_x = 0$). In actuality, however, several factors can cause error in radar pointing in the forward-aft direction ($e.g.,$ attitude determination errors, thermal distortions of the antenna structure, vibrations due to moving parts, slew, thermal flutter or thermal snaps). For $v_S = 7 \text{ km/s}$ one can note that a mispointing error of only 0.1 deg. causes an offset $v_p$ up to 12 m/s. In order to guarantee $|v_p| < 1 \text{ m/s}$, the rms in the knowledge of the pointing direction should be of 4 arcsecs or less. Such requirement for a LEO satellite poses a technological challenge even for the most sophisticated Attitude Determination Systems.

Recently, Im et al. (2002) proposed to apply the CFT technique to the sea surface echo in order to estimate $v_p$ and therefore remove the pointing-induced bias from mean velocity estimates. The first promising results show that CFT is capable of removing pointing-induced biases introduced from several sources of pointing error.

![Fig. 3 Application of CFT to sequences of measured Doppler spectra: a) example of sequence of Doppler spectra, white diagonal lines indicate the target tracks, b) target track, c) periodogram, d) interpolation of power spectral samples to obtain measured target tracks.](image-url)
6. ERRORS INDUCED BY SURFACE CLUTTER

As demonstrated by Durden et al. (2001), the contribution of surface clutter from the sidelobes is typically below the thermal noise level for a nadir-looking radar. Furthermore, since the surface clutter received through the sidelobes is generated by annuli of the sea surface centered at nadir, this contribution can be well approximated with a white spectrum. Therefore, the effect of this contributions can be assimilated to that of white noise discussed previously.

On the other hand, the spectrum of range gates immediately above the surface are heavily contaminated by surface clutter because of the finite receiver bandwidth. Incidentally, as mentioned in the previous section, the Doppler spectrum of the radar cell intersecting the surface is useful to estimate the pointing-induced bias. Such correction is possible by relying on the fact that the sea spectrum is roughly Gaussian and the surface average vertical velocity is zero (Im et. al. 2002). This fact allows also to envisage a spectral analysis technique capable of removing the clutter component of the spectrum from the radar cells affected by mild surface clutter. The development of such technique is of paramount importance to extend (towards the surface) the region of reliable rain echo, especially if the use of pulse compression and/or large β is required.

7. RESULTS AND CONCLUSIONS

The findings and the results described in the previous sections provide the criteria to define several radar system configurations capable of measuring the average rainfall vertical velocity with the 1 m/s accuracy required by most science applications.

One such configuration is described in Table 2.
Satellite speed $v_s$ 7 km/s
Satellite altitude $h_s$ 432 km
Pulse repetition frequency $PRF$ 6000 Hz
Operating frequency $f_c$ 13.6 GHz
Operating wavelength $\lambda$ 2.2 cm
Nyquist Doppler velocity $v_m$ $\lambda PRF/4=33$ m/s
Doppler shift rate $q_{r,v}$ $v_s/h_s=16.2$ m/s km$^{-1}$
Antenna diameter $D$ 5 m
3dB antenna beamwidth $\theta_3$ 0.3°
"Null-to-null" beamwidth $\theta_0$ 0.75°
Number of pulses $M$ 64
Minimum detectable rain reflectivity $N$ 17 dBZ

Table 2: NDPR configuration I parameters

Simulations were carried out using this set of parameters in a 3D Doppler radar simulator where several sequences of periodograms are simulated from two kind of high-resolution 3-D rainfall data sets: set A, acquired by the NASA/JPL Airborne Rain Mapping Radar (ARMAR, Durden et al. 1994) and set B generated by a Cloud Resolving Model. In this simulation model (Tanelli et al., 2002), each NDPR resolution volume (2.2-km horizontal and 240-m vertical resolution) is divided into several sub-volumes of sizes comparable to those of the ARMAR data (200-m horizontal and 80-m vertical resolution) to account for the presence of NUBF. The natural spectrum of each sub-volume is first computed by taking into account the spread of terminal velocities of different rain particles and the additional broadening due to turbulence and wind shear. The spectrum is then shifted by the radial component of the satellite velocity calculated at the center of the sub-volume, and by the average vertical wind speed derived from ARMAR Doppler measurements. These natural power spectra from all sub-volumes are summed to generate the NDPR power spectrum. The corresponding periodogram is then derived as in Zrnic (1978). Statistical variability of the rainfall signal, receiver’s noise and surface clutter are included in the simulations. The spacecraft attitude errors and antenna misalignments were simulated by a stochastic process with cutoff frequency at 0.25 Hz.

Results of simulations such as that shown in Fig. 4 confirmed that this radar configuration is capable of providing the required level of accuracy. Also, the use of CFT is necessary when NUBF occurs. Furthermore, its application to surface Doppler spectra is useful to correct for the NUBF-induced bias as shown in Fig. 5.

ACKNOWLEDGMENT

The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space
Administration, and by the University of Firenze through a program funded by ASI (Italian Space Agency).

REFERENCES


