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1. INTRODUCTION

Infrared (IR) imagery from geostationary satel-
lites is a crucial tool in diagnosing and forecasting
tropical cyclones (TC’s) because the temporal and
spatial regularity of sampling allows for continuous
global monitoring of TC’s. On the less positive side,
IR imagery is often severely limited at giving direct
information about TC inner core structure and evo-
lution because upper level cirrus clouds are opaque
at typical IR wavelengths. This is especially prob-
lematic in TC scenes which often display a central
dense overcast (CDO) aloft, and much of the struc-
ture of the eyewall and surrounding rainbands be-
comes obscured.

Although TC diagnosis and forecasting is chal-
lenged by the presence of upperlevel cirrus, the reg-
ularity of IR data and the volume of images that
currently exist in archival data sets allow for cal-
culation of indirect relationships between cloud top
temperatures (Tb) and intensity. The first widely ap-
plied method for estimating TC intensity using geo-
stationary data was the Dvorak technique (Dvorak
1975, 1984). In response to the inherent subjectiv-
ity of the Dvorak technique, Zehr (1989) and Velden
et al. (1998) developed the objective Dvorak tech-
nique (ODT) which is currently employed by various
forecast centers and provides an objective method
that is competitive with the subjective Dvorak tech-
nique. At present, various ways to improve the per-
formance of the ODT are being explored under the
umbrella of the advanced ODT (AODT, Olander et
al. 2002). In particular, improvement of the ODT
in the case of weaker systems (below Category 1) is
being addressed using various scene typing schemes
and objective curved band analyses. All three of
these methods (the subjective, objective, and ad-
vanced objective Dvorak technique) relate particu-
lar IR derived parameters to current TC intensity.
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To put it another way, these methods are based on
correlations between IR imagery features and TC in-
tensity. For example, it is accepted that colder cloud
tops (i.e., deeper convection) in the TC eyewall re-
gion correlate well with greater intensity. These cor-
relations have historically been determined by means
of human experience, that is, empiricism.

This paper introduces a new approach that
builds on empirical foundations, and considers more
formal statistical relationships between IR derived
variables and TC intensity. A multivariate linear
model (multiple regression) is formed and tested. At
the writing of this paper, only a handful of indepen-
dent error tests have been performed to establish the
accuracy and consistency of the method, but all re-
sults thus far have been very encouraging, and sug-
gest that the linear model is competitive with the
existing AODT while streamlining the process con-
siderably and reducing the number of decisions (e.g.,
scene type identification) that are made within the
framework of the AODT. Much more thorough test-
ing will be presented at the meeting.

2. RESULTS

As a first step, the IR predictors applied to the
model are the same as those used by the AODT.
Mean sea level pressure (MSLP) measured by air-
craft reconnaissance (recon) is the predictand. The
IR parameters that we found to be highly signifi-
cant (above 99%) in their correlation with TC cen-
tral MSLP comprise almost the entire set of IR pa-
rameters currently employed by the AODT in addi-
tion to latitude and longitude1 (Table 1). This is
an encouraging result because it formally confirms
that the input parameters to the current AODT
do indeed relate well statistically to intensity. Re-
sults of a dependent test of the new regression based

1The correlation of longitude and TC intensity may
be due to Atlantic SST climatology, and while the signif-
icance is high, the amplitude is very small and has little
effect on the intensity estimate.



Table 1: Normalized coefficients (sorted by am-
plitude) for the predictors used in the multivari-
ate linear model. ERT = temperature of warmest
pixel in eye region, CWCRT = coldest pixel from a
set of warm pixels along a set of cold rings (Zehr
1989), MCRT = mean cloud region temperature,
LAT = latitude, ERFTV, CRFTV = eye, cloud re-
gion Fourier transform value, CRSV = cloud region
symmetry value, LON = longitude. The variance of
aircraft measured MSLP explained by the regression
is 57%.

predictor norm. coeff. conf. level

ERT -0.7705 99.9–100%
CWCRT 0.3952 99.9–100%
MCRT 0.3842 99.9–100%
LAT -0.2799 99.9–100%
ERFTV 0.1259 99.9–100%
CRFTV 0.0958 99–99.9%
CRSV -0.0896 99–99.9%
LON 0.0591 99.9–100%

method applied to a sample of 1624 IR images for
which we have corresponding aircraft reconnaissance
MSLP data is shown in Fig. 1.

Comparison of the first (top) and third panels
in Fig. 1 shows that when estimating MSLP based
on a single image (i.e., with no information about
previous IR scenes or intensities), the linear model
outperforms the AODT. The root mean square er-
ror (RMSE) of MSLP estimated by the linear model
is 13 mb while the RMSE of the AODT raw T-
number MSLP is 17 mb. The linear model has re-
duced the outliers and distributes the errors more
normally. Comparison of the second and fourth
(bottom) panels shows that when MSLP estimated
by the linear model (denoted as r-MSLP) is time
averaged2, the linear model is competitive with the
CI-number based MSLP of the AODT. The RMSE
for both methods are essentially equal, and the er-
rors of the averaged r-MSLP are more normally dis-
tributed. The AODT CI-number is formed using
a combination of time averaging and application of
rules, some of which are based on identification of
scene types (the rules and scene types are employed

2Time averaging was performed using the same 12 h
weighted mean that is used in the ODT and AODT. We
plan on testing different averaging schemes, and may find
that a shorter averaging period will perform just as well
or better.
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Figure 1: Error analysis of MSLP estimated from the
AODT raw T-number and CI-number versus reconnais-
sance (top two panels), and the regression based MSLP
(r-MSLP) before and after time averaging (bottom two
panels).



within the AODT in order to mirror the rules set
out in the subjective Dvorak technique). Scene type
identification is one of the more difficult challenges
that research on the AODT is actively addressing,
but is not required by the linear model.

The results shown in Fig. 1 are based on depen-
dent testing of the entire sample of images that are
concurrent with recon. An independent test of two
TC’s is presented here. For each TC, we rederived
the regression coefficients for the entire sample mi-
nus that particular TC, and then tested the isolated
storm (jackknife procedure). The results are shown
in Fig. 2 [Fran (1996)], and Fig. 3 [Edouard (1996)].
As seen in Fig. 2, the linear model (based on a single
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Figure 2: Independent (jackknife) MSLP error analysis
of the linear model applied to Hurricane Fran (1996),
and comparison with the AODT.

image, i.e., with with no time averaging) again gives
a better estimate of MSLP than the raw T-number
derived from the AODT. The RMSE is reduced from
13 mb to 8 mb. The bias is comparable, but of op-
posite sign (negative error implies an overestimation
of intensity). The bottom panel shows the evolution
of MSLP as measured by recon (black curve), and as
estimated by the linear model (red) and the AODT
(blue and green). Presently, we are performing time
averages of r-MSLP but they are not yet available
at the time of this writing. It is clear however that
a time average performed on the red r-MSLP curve
in Fig. 2 will result in greater accuracy. The formal
results will be presented at the meeting.

Figure 3 demonstrates the performance of the
linear model applied to Hurricane Edouard (1996).
The RMSE is again significantly lower than the
AODT (based on raw T-number), as is the bias, but
the systematic underestimation of MSLP is evident
in both the linear model and the AODT. As seen in
the bottom panel, the calculation of CI-number from
the AODT raw T-number does a good job of forcing
the MSLP closer to the recon curve, and the linear
model is fairly competitive overall. Again, a reduc-
tion of error can be expected when time averaging
of r-MSLP is performed.

It should be noted that the results shown in
Figs. 2 and 3 do not constitute a thorough examina-
tion of the performance of the linear model. Further
testing is needed, and it is possible that the model
will be significantly outperformed by the AODT on
particular individual cases. Again, results of this
thorough testing will be provided at the meeting.

3. DISCUSSION

A new model for estimating TC intensity using
IR imagery was introduced. The model is a sim-
ple linear regression of aircraft reconnaissance MSLP
onto a set of IR derived parameters, and information
about TC position. When compared in a depen-
dent test using a large sample of images, the MSLP
estimated by the linear model (r-MSLP) has sig-
nificantly smaller errors than the MSLP estimated
from the AODT raw T-number. When time averag-
ing was performed on r-MSLP, the linear model was
competitive with the AODT CI-number, while the
calculation of r-MSLP requires less steps and deci-
sions than the AODT. At the time of this writing, a
very limited amount of independent testing has been
performed, and it is not yet clear how well the linear
model will perform in a variety of cases, but the in-
dependent testing results using Hurricanes Fran and
Edouard (1996) are very encouraging.
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Figure 3: Same as Fig. 2, but for Hurricane Edouard
(1996).

In closing, we note that the construct of the
multivariate linear model also allows for the easy
future inclusion of a broad variety of additional pa-
rameters. In particular, inclusion of microwave de-
rived parameters (e.g., Bankert and Tag 1997, 2002;
May et al. 1997; Hawkins et al. 1998) seems a log-
ical next step in the evolution of a hybrid model
that incorporates multi-satellite sensor information
to estimate TC intensity. Additional IR derived pa-
rameters can also be easily tested within the model.
Information regarding climatology, persistence, and
synoptic scale environmental factors similar to those
used in SHIPS (Statistical Hurricane Intensity Pre-
diction Scheme; DeMaria and Kaplan 1999; DeMaria
et al. 2002, 2003) may form significant parameters

for estimating current intensity as well as forecasted
intensity, and can be readily included in the linear
model.
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