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1. INTRODUCTION 
  

The genetic algorithm (GA) is an 
optimization tool that has shown great success 
at solving problems not amenable to easy 
solution via more traditional means (such as 
the traveling salesman problem, solved by 
Koza 1992).  Since most CFD problems have 
not been traditionally posed in terms of 
optimization, GAs have not yet been widely 
used in this field.  The goal of this work is to 
demonstrate the ability of the GA to provide 
interesting solutions to problems difficult to 
solve in more traditional ways.  One need only 
to be a bit creative in posing the problem as 
one in optimization.  For instance, boundary 
value problems can be seen as minimizing the 
discretized version of the magnitude of a 
partial differential equation (PDE).  Similarly, 
inversion problems often involve finding the 
best fit parameters to an assumed version of a 
model.  For nonlinear model forms, it is often 
difficult to analytically minimize the mean 
square difference between model and data.  
These are cases where the GA has potential 
to help in making strides forward. 
 
 
2. CONTINUOUS PARAMETER GENETIC 
        ALGORITHM 
 

The flow chart in Figure 1 provides a “big 
picture'' overview of a continuous genetic 
algorithm, that is, one in which the parameters 
are real numbers.  The parameters are the 
genes which are strung together in a one-
dimensional array known as a chromosome.  
The GA begins with a population of 
chromosomes which are fed to the cost 
function for evaluation.  The fittest 
chromosomes survive while the highest cost 
ones die off. This process mimics natural 
selection in the natural world. The lowest cost  
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survivors mate. The mating process combines 
information from the two parents to produce 
two offspring. Some of the population 
experiences mutations. The mating and 
mutation operators introduce new 
chromosomes which may have a lower cost 
than the prior generation. The process iterates 
until an acceptable solution is found.  More 
specific description of the process follows. 
 
Creating the Population 
 
     The first step of a continuous parameter 
genetic algorithm is creating the population of 
chromosomes.  First, the real parameters are 
concatenated together into a chromosome as: 
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where the ip  are the parameters and there 

are a total of parN parameters. The 

parameters are simply floating point numbers.  
The encoding function needs only keep track 
of which digits represent which parameters 
and to make sure they are within given 
bounds.  A population of such chromosomes 
is created using a random number generator 
so that the chromosome arrays are gathered 
together in a two dimensional matrix.  
 
     Once the chromosomes have been 
created, their cost or fitness must be 
evaluated.  This is done by the cost or 
objective function, which is very problem 
specific.  The lowest cost chromosomes 
( keepN ) remain in the population while the 

higher ones are deemed less fit and die off.  
The reduced population is then the portion of 
the population available for mating. 
 
Choosing the Mates 
 
     There are a variety of methods to pair the 
chromosomes for mating.  Some popular 
methods are reviewed by Haupt and Haupt 
(1998).  Here, we choose to pair the 
chromosomes according to numerical rank.  
After the cost function evaluation, the 



chromosomes are sorted in order from lowest 
cost to highest.  That is, the nth chromosome 
will have a probability of mating of: 
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Then the cumulative probabilities are used for 
selecting which chromosomes mate. 
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Figure 1. Flow chart of a continuous genetic 

algorithm. 
 
Crossover 
 
       Once two parents are chosen, some 
method must be devised to produce offspring 
which are some combination of these parents. 
Many different approaches have been tried for 
crossing over in continuous parameter genetic 
algorithms. Adewuya (1996) reviews some of 
the current methods thoroughly. Several 
interesting methods are demonstrated by 
Michalewicz (1992).  Haupt and Haupt (1998) 
gives an overview of some popular methods. 
 
     The method used here is a combination of an 
extrapolation method with a crossover method. We 
wanted to find a way to closely mimic the 
advantages of the binary genetic algorithm mating 
scheme. It begins by randomly selecting a 
parameter in the first pair of parents to be the 
crossover point.  

{ }parNrandomroundup ×=α                    (3) 

 
We'll let  
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where the m and d subscripts discriminate between 
the mom and the dad parent. Then the selected 
parameters are combined to form new parameters 
that will appear in the children: 
 

[ ]
[ ]ααα

ααα

β

β

dmdnew

dmmnew

pppp

pppp

−−=

−−=

2

1                           (5) 

 
where β  is also a random value between 0 and 1. 
The final step is to complete the crossover with the 
rest of the chromosome as before: 
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If the first parameter of the chromosomes is 
selected, then only the parameters to right of the 
selected parameter are swapped. If the last 
parameter of the chromosomes is selected, then 
only the parameters to the left of the selected 
parameter are swapped. This method does not 
allow offspring parameters outside the bounds set 
by the parent unless β  is greater than one.  In this 
way, information from the two parent 
chromosomes is combined a way that mimics the 
crossover process during meiosis. 
 
Mutations 
     If care is not taken, the genetic algorithm 
converges too quickly into one region of the cost 
surface. If this area is in the region of the global 
minimum, that is good. However, some functions 
have many local minima and the algorithm could 
get stuck in a local well. If we do nothing to solve 
this tendency to converge quickly, we could end up 
in a local rather than a global minimum. To avoid 
this problem of overly fast convergence, we force 
the routine to explore other areas of the cost 
surface by randomly introducing changes, or 
mutations, in some of the parameters. A mutated 
parameter is replaced by a new random parameter. 
 



3. The Super Korteweg de Vries Equation 
 
     Above, we described the continuous parameter 
genetic algorithm.  The piece yet missing is the 
cost function or objective function which 
determines the fitness of the chromosome.  The 
cost function is very problem dependent. Here, we 
will look at solutions to nonlinear boundary value 
problems in fluid dynamics.  The key is to 
formulate the objective, or cost function that the 
GA uses to determine the state of the optimization 
as the solution of the partial differential equation. 
The procedure consists of first expanding the 
independent variables in terms of orthogonal basis 
functions, performing a Galerkin projection, and 
then requiring that the result be minimized over a 
given set of points.   
 
      When the equation is nonlinear, finding a 
solution suddenly becomes extremely difficult.  
Although a few nonlinear PDEs can be solved 
analytically, we often must rely on numerical 
methods to determine an approximate solution.  
One class of PDEs of particular interest to 
engineers and scientists is the solitary wave. 
Solitary waves, or solitons, are permanent form 
waves for which the nonlinearity balances the 
dispersion to produce a coherent structure. They 
appear as models of many coherent phenomena 
ranging from propagation patterns in optical cables 
to the Great Red Spot of Jupiter. Here, we are 
interested in demonstrating that a genetic algorithm 
is a useful technique for solving a highly nonlinear 
differential equation that is formally nonintegrable. 
 
     The equation to be solved here the Super 
Korteweg de Vries (SKDV) Equation: 
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where the functional form is denoted by u , time 
derivative by the t subscript, spatial derivative by 
the x  subscript, and α , µ , and υ  are parameters 
of the problem. It is a model for several physical 
phenomena, including shallow water waves near a 
critical value of surface tension, magneto-acoustic 
waves propagating at an angle to an external 
magnetic field, and waves in a nonlinear LC circuit 
with mutual inductance between neighboring 
inductors Yoshimura and Watanabe (1982).  We 
wish to solve for waves that are steadily translating 
so we write the t variation using a Galilean 
transformation, X=x-ct where c is the phase speed 
of the wave. Thus, our SKDV becomes a fifth 
order, nonlinear ordinary differential equation: 
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     Boyd (1986) extensively studied methods 
of solving this equation. He expanded the 
solution in terms of Fourier series to find 
periodic cnoidal wave solutions (solitons that 
are repeated periodically). Among the 
methods used are the analytical Stokes' 
expansion, which intrinsically assumes small 
amplitude waves, and the numerical Newton-
Kantorovich iterative method, which can go 
beyond the small amplitude regime if care is 
taken to provide a very good first guess.  This 
method is based on the Newton iteration and 
requires an analytical expansion of the 
equation into a mean plus a perturbation. The 
equation is solved for the perturbation and 
then discretized.  At each step of the iteration, 
the perturbation is found and added to the 
prior solution.  This method assumes that the 
perturbation is small, thus requiring a good 
“first guess” to the solution. 
 
      Haupt and Boyd (1988) were able to 
extend these methods to deal with resonance 
conditions. These methods were generalized 
to two dimensions to find double cnoidal 
waves (two waves of differing wave number 
on each period) for the integrable Korteweg de 
Vries equation (Haupt and Boyd 1988) and the 
nonintegrable Regularized Long Wave 
Equation (Haupt 1988). However, these 
methods require careful analytics and 
programming that is very problem-specific. 
Here, we use a genetic algorithm to obtain a 
similar result with considerably less effort. 
 
     Normally, we don't think of PDEs as 
minimization problems. However, if we want to 
find values that force a differential equation to 
zero (a form in which we can always cast the 
system), we can look for the minimum of its 
absolute value. Koza (1992) demonstrated 
that a genetic algorithm could solve a simple 
differential equation by minimizing the value of 
the solution at 200 points. To do this, he 
numerically differentiated at each point and fit 
the appropriate solution.  For this fifth order 
equation, this is not so easy.  Therefore we 
combine the genetic algorithm with a spectral 
expansion which eases the differentiation. 
 
     To find the solution of (8), we expand the 
function u in terms of a Fourier cosine series: 
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Without loss of generality, we have assumed 
that the function is symmetric about the x-axis 
by not including sine functions. In addition, we 
use the “cnoidal convention'” by assuming that 
the constant is 0. Now, we can easily take 
derivatives as powers of the wave numbers to 
write the cost that we wish to minimize 
as:
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        (10) 
     Equation (10) is reasonably easy to put into 
the cost function of a continuous genetic 
algorithm. We wish to find the coefficients of 
the series, ka .  The only minor complication is 
computing u in the nonlinear term to insert into 
the cost function (10). However, this is merely 
one extra line of code. We just use the 
spectral expansion of the current 
chromosome. 
 
     The parameters that we used here are 

1=υ , 0=µ , 1=α , and a phase speed of 
c=14.683 to match with a known highly 
nonlinear solution. Note that the phase speed 
and amplitude of solitary type waves are 
interdependent. We could instead have 
specified the amplitude and solved for the 
phase speed. It is equivalent. We computed 
the coefficients, ka , to find the best cnoidal 
wave solution for K=6. We used 500=ipopN , 

100=popN , mutation rate of 0.2, and 70 

iterations. We evaluated the cost function at 
merely 2 points for this run and summed their 
absolute value. The results appear in Figure 2. 
The solid line is the “exact'' solution reported 
by Boyd (1986) and the dashed line is the 
genetic algorithm's approximation to it. They 
are barely distinguishable. For interest's sake 
we show a genetic algorithm solution that 
converged to a double cnoidal wave as Figure 
3.  This solution was found for a total of 6 
basis functions, variable phase speed 
(computed c=-9.6436), 100 iterations, 
population size of 32, and mutation rate of 
0.25. These double cnoidal wave solutions 
would require a two-dimensional expansion 
involving two different phase speeds in the 
Newton-Kantorovich method.  Here, we were 

able to find them using the same basic cost 
function as for the single cnoidal wave.   
 
 
 

 
Figure 2.  A cnoidal wave of the SKDV with 
phase speed of c=14.683.  The solid line is an 
“exact” solution due to Boyd (1986) and the 
dashed line is the GA solution which 
approximates it. 
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Figure 3. Double cnoidal wave of the SKDV as 
found by the genetic algorithm. 
 



4. EMPIRICAL MODELING WITH A  
GENETIC ALGORITHM 

 
     A second use of GAs is to solve for 
solutions of nonlinear inversion problems.  For 
example, empirical models have gained 
popularity in recent years as an alternative to 
the more traditional dynamical models (for 
example see Hasselman 1988, Penland 1989, 
Branstator and Haupt 1998).  Linear empirical 
models are easy to produce from data using 
standard least squares inversion techniques.  
However, nonlinear models are more difficult 
to devise due to the introduction of high order 
tensors to the problems.  GAs can resolve this 
issue through redefining the problem in terms 
of optimization and directly searching for the 
propagator matrix given the data. The use of 
the binary GA for a simple inverse problem is 
demonstrated in the companion paper, Haupt 
and Haupt (2003). Here, this technique is 
demonstrated for matching low order nonlinear 
systems, such as the Lorenz equations 
(Lorenz 1963) which can be written: 
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where x, y, z are the lowest order coefficients 
of a truncated series of atmospheric flow and 

we use parameters: 28,3
8,10 === ρσ b  

These parameters produce a chaotic regime 
that results in a strange attractor.  The 
equations (11) were integrated using a fourth 
order Runge-Kutta method to produce the 
data in Figure 4. 

 
 

 
Figure 4.  A Lorenz attractor computed by 
integrating equations (11) in time for 2000 steps. 

 
 
We wish to create an empirical model of these 
data.  Since the model is highly nonlinear, we 
choose to fit a nonlinear model of the form: 
 

ξ++= xCxBxx T&                 (12) 
 
where the variables have been incorporated 
into the vector x, B is an N x N matrix that 
serves as the linear propagator, C is an N x N 
x N third order tensor that gives the 
coefficients of the quadratic interactions, and 
ξ  is the constant noise vector.  We wish to 
compute the matrices B and C so that the 
least square error of (12), 
 

( )2
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is minimized.  The angle brackets denote a 
time average.  Minimizing E with respect to B 
and C gives the system of equations: 
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where: 
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Although this is a closed form solution, to 
compute the third order tensor C requires 
inverting the fourth order tensor 4T .  Such an 
inversion is not trivial.  Therefore, we choose 
to instead compute C in equation (14) by 
doing a best fit with a genetic algorithm. 
 
     The parameters of the GA are an initial 
population of 500, working population of 100, 
mutation rate of 0.3 for a total of 200 
generations.  Taking into account symmetries 
for this problem results in 18 unique 
parameters to find.  For this highly nonlinear 
regime, we were able to find a solution, which 
when propagated via equation (12), produces 
the time evolution depicted in Figure 5.  
Although the match is not perfect, we have 
replicated the general shape of the strange 
attractor and the size of the domain is 
approximately correct. 



  
 

 
Figure 5.  Nonlinear model of Lorenz attractor 
(equation 12) as computed with a GA. 
 
 
     For comparison, the solution is compared 
to a linear model fit, which is merely the linear 
part of (12).  For this portion, there is a simple 
closed form solution that is easily computed.  
The linear match is shown in Figure 6.  We 
see that the linear model is not able to capture 
the shape of the attractor, but instead shows a 
decaying spiral behavior. 
 

 
Figure 5.  Linear model of the Lorenz 
equations. 
 
 
5. CONCLUSIONS 
 
     Genetic algorithms show promise for 
optimization problems in complex systems.  
Here we have given two examples of 
problems where they may prove useful in the 
future.  In the first problem, the genetic 
algorithm was used to find the coefficients of a 
Fourier series that best models a nonlinear 
wave equation.  The equation was expanded 
in Fourier series and the phase speed and 
amplitudes were fit.  The GA was quite good 

at reproducing an “exact” solution to the 
cnoidal wave solution.  In addition, it was able 
to find a double cnoidal wave solution that 
would have involved major effort using most 
other techniques.   
 
     The GA can also fit empirical models to 
nonlinear systems much better than can the 
usual linear least squares fit.  The GA 
reproduced the shape of the attractor to the 
Lorenz equations reasonably well given the 
utter failure of the linearized method. 
 
     Genetic algorithms are not perfect.  One 
cannot predict their convergence properties 
well in advance.  However, they show great 
ability at not only finding the best minimum 
solution, but also find multiple minima where 
other methods fail. 
 
     The utility of the GA is only beginning to be 
tapped.  Its usefulness is only limited by the 
creativity of the scientists who use them. 
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