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1. INTRODUCTION

Principal component analysis (PCA) is widely
used to extract the linear relations between vari-
ables in a dataset. To detect nonlinear relations, the
nonlinear principal component analysis (NLPCA) by
a 3-hidden-layer feed-forward neural network was
proposed by Kramer (1991), which has been used
to analyze datasets from many fields. However, the
3-hidden-layer NLPCA can be rather unstable, of-
ten resulting in the overfitting of data, especially for
noisy datasets with rather few samples. Techniques
such as the addition of weight penalty terms in the
cost function or early stopping during training can
reduce the severity of the problems, but offer no
guarantee of the optimal solution. This paper shows
that the instability and tendency to overfit in the 3-
hidden-layer NLPCA can be well alleviated in the
simplified 2-hidden-layer NLPCA.

2. The 3-hidden-layer NLPCA

In the 3-hidden-layer NLPCA (Fig. 1) pro-
posed by Kramer (1991), the input signals are trans-
fered to the ‘encoding’ neurons in the first hidden
layer. The hyperbolic tangent function is used as the
transfer function here, and again when the signal
moves from the ‘bottleneck’ neuron in the second
hidden layer to the ‘decoding’ neurons in the third
hidden layer. Linear transfer functions are used to
map from the encoding layer to the bottleneck layer
and from the decoding to the output layer. Effec-
tively, a nonlinear function maps from the higher di-
mension input space to the low dimensional bottle-
neck space, followed by an inverse transform map-
ping from the bottleneck space back to the origi-
nal space represented by the outputs. This is an
auto-associative network, in that the target and in-
put datasets are the same, hence the cost function,
which is the mean square error

�
between the out-

puts and the inputs, is minimized by adjusting the
weight and bias parameters in the transfer func-
tions. Data compression is achieved by the bottle-
neck, with the single bottleneck neuron in Fig. 1 giv-
ing the leading nonlinear principal component. The
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numbers of encoding and decoding neurons are ad-
justable for the optimal fit, but are set the same for
simplicity. This imposed symmetry does not affect
our conclusions. The NLPCA in Fig. 1 with 3, 2, 1,
2 and 3 neurons in its 5 layers will be referred to as
a 3-2-1-2-3 model.
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FIG. 1: A schematic diagram of the 3-hidden-layer
FFNN model for performing the NLPCA. There are 3
layers of hidden neurons sandwiched between the input
layer on the far left and the output layer on the far right.
Next to the input layer is the encoding layer, followed by
the bottleneck layer, which is then followed by the decod-
ing layer.

It can be shown that among the derivative of
�

with respect to bottleneck weights Bm and bias
b and decoding weights Cm and biases cm, there
are linear dependences (due to the linear transfer
functions used at the bottleneck layer):
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where M is the number of encoding neurons. The
number of linearly independent optimization equa-
tions is 2 less than the number of weight and bias
parameters. Hence the weights and biases cannot
be uniquely determined and the bottleneck signal is
non-unique.

As an example, the Kaplan extended sea sur-
face temperature anomaly (Kaplan et al. 1998) from
January 1856 to July 2001, covering the tropical Pa-
cific Ocean from 22.5oS to 17.5oN with 5o � 5o res-
olution, is analyzed. The first and second principal



components of the monthly anomaly, extracted us-
ing the classical principal component analysis (von
Storch and Zwiers 1999), are used as the input and
target datasets. The evaluated weights and biases
of different runs from the same model are different.
For instance, the weight of encoding neuron 1 for
input series 1 A11 = � 1.646 for run 1, A11 = � 0.174
for run 2 while A11 = � 0.734 for run 3 from the 2-
2-1-2-2 model. For the run bearing the lowest MSE
value of a 2-M-1-M-2 model, where M is varied from
2 to 4, Fig. 2 shows the bottleneck series ul (l being
the temporal index) and the output series qil (over-
lapping circles, with dots denoting the target series
pil , where i indicates the ith output or target series).
The bottleneck series (Figs. 2a, c and e) are non-
unique. The scatterplot of the output series of the
2-2-1-2-2 run 4 forms a hump (Fig. 2b), whereas
increasingly wiggly or overfitted solutions are found
as M increases (Figs. 2d and 2f). In Figure 2g, the
MSE values of run 1 to run 5 of the three models
are shown. The MSE values are reduced but have
greater standard deviations as M increases.
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FIG. 2: The 3-hidden-layer NLPCA applied to the first
and second principal components of the Kaplan extended
sea surface temperature anomaly. (a), (c), (e) Bottleneck
and (b), (d), (f) output series (overlapping circles) of 2-2-
1-2-2 run 4, 2-3-1-3-2 run 5, 2-4-1-4-2 run 4. (g) MSE
values of run 1 to run 5 from the 2-M-1-M-2 model, where
M is varied from 2 to 4. The target data are shown as
dots in (b), (d) and (f).

3. The 2-hidden-layer NLPCA

We will show that by eliminating the encoding
layer and replacing the linear function at the bottle-
neck layer by a nonlinear one, the overfitting and
non-uniqueness problems are alleviated. Figure 3
shows the 2-hidden-layer NLPCA with three input,
one bottleneck, two decoding and three output neu-
rons, i.e, a 3-1-2-3 model. The hyperbolic tangent
function is used at both hidden layers while the lin-
ear transfer function is retained at the output layer.
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FIG. 3: A 2-hidden-layer NLPCA. From left to right are
the input, bottleneck, decoding and output layers of neu-
rons.

A dataset of 600 sampling points is generated
from the Lorenz attractor, a 3-component chaotic
system (Lorenz 1963), and analyzed by the 3-1-M-
3 model, where M is varied from 4 to 14. The MSE
values group into two, one is around a local min-
imum near 14.1 and the other around the global
minimum below 14.0. Figure 4a shows the MSE
values of 20 runs for each M, as M increases. To
see the lowest MSE value of each model, Figure 4b
shows the MSE values between 13.96 and 13.99.
The lowest MSE value of all the models is 13.97 at-
tained for M=6. To see whether the solutions of the
M=7 and 8 models are the same as the M=6 model,
Figure 4 shows the target series pil (thin line) and
the output series qil (dots), p1l and q1l in (c), p2l and
q2l in (d) and p3l and q3l in (e), of the runs bear-
ing MSE � 13.99 from the 3-1-6,7,8-3 models (solid
circles in Fig. 4b). The output series of the runs in-
cluded are indistinguishable from one another and
smoothly approximate the target series. The overfit-
ting problem is well restrained. The corresponding
bottleneck series ul (Fig. 5a) displays signs which
are often opposite among different runs giving rise
to symmetric patterns. In general, ul reverses sign
at around l = 260 and l = 480. The major cause of
the deviations among the bottleneck series seems
to be the inclusion of bottleneck bias, as we will test
by deleting the bottleneck bias from the network.
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FIG. 4: The 2-hidden-layer NLPCA applied to the
Lorenz dataset. (a) MSE values and (b) MSE values be-
tween 13.96 and 13.99, from the 3-1-M-3 model, where
M is varied from 5 to 9. (c), (d) and (e) The Lorenz data
(thin line) and the output series (dots) of the runs with
MSE¡13.99 from the 3-1-6,7,8-3 models.

The Lorenz dataset is again analyzed by the
3-1b-M-3 model, without the bottleneck bias as de-
noted by the superscript b, where M is again varied
from 4 to 14 with 20 runs for each M. The resul-
tant MSE values (not shown) suggest the same two
groups as before and the output series of the runs
with MSE � 13.99 from the 3-1 b -6,7,8-3 models
(not shown) strongly resemble those from the 3-
1-6,7,8-3 models (Fig. 4a,c-e). Again, the lowest
MSE of the new models is 13.96 � 13.97 for M � 6.
The scatter of ul from 3-1b-6,7,8-3 model runs with
MSE � 13.99 (Fig. 5b) is much reduced compared
to the 3-1-6,7,8-3 model results (Fig. 5a). Hence,
eliminating the bottleneck bias parameter signifi-
cantly reduces the deviation of the bottleneck series
for different runs.

Both with MSE of 13.97, run 6 and run 13 of the
3-1b-6-3 model have indistinguishable output series
and indistinguishable bottleneck series. However,
the output biases for run 6 and run 13, respectively,
are d1 = 0.6370 and 1.0214, d2 = � 0.5604 and
0.2982, d3 = 5.2902 and 3.3330 (di is the bias of
output neuron i). This suggests testing the NLPCA

without the output bias parameters. The Lorenz
dataset is analyzed using the 3-1b-M-3b model, i.e.,
without bottleneck and output biases as denoted by
the superscript b, where M is still varied from 4 to
14 with 20 runs for each M. Again the MSE values
(not shown) fall into two groups as for the 3-1-M-3
model (Fig. 4a) and the lowest MSE value of the
3-1b-M-3b model is 13.97, attained for M � 6.
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FIG. 5: The bottleneck series u of the runs with
MSE¡13.99, (a) from the 3-1-6,7,8-3 models and (b) from
the 3-1b-6,7,8-3 models.

The 3-1b-6-3b model, with the least number of
parameters among models with similar low MSE
values, is optimal according to the principal of par-
simony (Burnham and Anderson 1998) and its run
15, bearing the lowest MSE value, offers the optimal
solution. Figure 6 shows the optimal solution (Figs.
6a, b, c) and a suboptimal solution from the 3-1b-5-
3b model with MSE=14.89 (Figs. 6d, e, f). The sub-
optimal solution shows a linear relation between q1l

and q2l and a less curved relation between q1l and
q3l than in the optimal solution.

As a second example, the first two principal
components of the Kaplan extended sea surface
temperature anomaly are analyzed by the 2-1b-M-
2b model for M=3,4,5. The MSE values steadily
converge to near 3.5 (Fig. 7a). The bottleneck se-
ries and the output series of the runs bearing the
lowest MSE from M=3,4,5 models are very similar,
and the results of the 2-1b-5-2b model run 1 are
shown in Fig. 7. The non-uniqueness and over-
fitting problems are well restrained in the simplified
2-hidden-layer NLPCA, the 2-hidden-layer NLPCA
with neither bottleneck nor output biases.
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FIG. 6: (a), (b) and (c) The output series (circles) by the
3-1b-6-3b NLPCA model with MSE=13.97 and the original
Lorenz data (dots). (d), (e) and (f) The output series by
a 3-1b-5-3b suboptimal solution (MSE=14.89). (a) and (d)
q1l , p1l versus q2l , p2l . (b) and (e) q1l , p1l versus q2l , p2l .
(c) and (f) q2l , p2l versus q3l , p3l .

4. The simplified 2-hidden-layer NLPCA with
two bottleneck neurons

As the two loops of the Lorenz attractor are not
represented by NLPCA with one bottleneck neuron,
the Lorenz dataset is then analyzed using the 3-
2b-M-3b model, where M is varied from 20 to 30.
Figure 8a shows the MSE values ( � 15) of run 1
to run 10 for each M. One group of MSE values is
around a local minimum about 14, while the other
group is around the global minimum under 1. Fig-
ure 8b shows the MSE values between 0.6 and 0.8.
The lowest MSE value of all the models is near 0.6,
attained by the 3-2b-22-3b model run 7 and the 3-
2b-29-3b model run 3 (darkened circles in Fig. 8b).
Figure 8c-e shows the target series (thin line) and
the output series (dots) of these two runs, where
q1l and q3l are indistinguishable from p1l and p3l re-
spectively, while q2l is often indistinguishable from
p2l . The scatterplots of the bottleneck series, u1l

versus u2l of the 3-2b-22-3b run 7 (Fig. 9a, cir-
cles) and � u1l versus u2l of the 3-2b-29-3b run 3
(Fig. 9a, crosses) are similar, showing that the non-
uniqueness of the bottleneck series is not serious.
Figure 9b-d shows the scatterplots of the output
series of the 3-2b-22-3b run 7, where intersecting
curves are well simulated.
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FIG. 7: The simplified 2-hidden-layer NLPCA applied
to the first two principal components of Kaplan extended
sea surface temperature anomaly. (a) MSE values from
the 2-1b-3,4,5-2b models. (b) Bottleneck and (c) output
series of the 2-1b-5-2b run 1.

5. Representation of the zonal wind in the equa-
torial stratosphere

The zonal winds in the tropical stratosphere ex-
hibit a predominant quasi-biennial oscillation (QBO)
(Baldwin et al. 2001). Because the reconstruction
of the QBO wind by the leading two principal com-
ponents of the principal component analysis (Wal-
lace et al. 1993) on the height-time record and
a linear construction of composite QBO cycle lose
some well-known features (Naujokat, 1986; Bald-
win et al. 2001), many authors used the wind at one
arbitrarily-chosen level in their studies to character-
ize the phase of the QBO. Recently, using the 3-
hidden-layer NLPCA with a circular bottleneck neu-
ron (Hamilton and Hsieh, 2002), the zonal winds are
better modelled than the linear analyses. However,
the circular bottleneck neuron is limited to only car-
rying phase information. So the zonal winds are
reanalysed here using the simplified 2-hidden-layer
NLPCA with two bottleneck neurons. The data are
from the monthly means of the zonal wind com-
ponent measured twice-per-day by balloons above
Canton Island (2.8oN) during January 1956 through
August 1967, Gan (0.7oS) from September 1967
through December 1975, and Singapore (1.4oN)
from January 1976 through December 2000 (Mar-
quardt and Naujokat 1997). Values at 70, 50, 40,
30, 20, 15 and 10 hPa (i.e. from about 20 km to 30
km altitude), with the 45-year mean removed but the
weak seasonal cycle retained, are used and here-
after called the QBO wind for convenience.

The QBO wind is analyzed using the 7-2b-M-
7b model, where M is varied from 10 to 30 with
20 runs for each M. The resultant MSE values (not
shown) suggest the global minimum around 9, was
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FIG. 8: The simplified 2-hidden-layer NLPCA applied to
the Lorenz dataset. (a) MSE values and (b) MSE values
between 0.96 and 0.99 from the 3-2b-M-3b model, where
M is varied from 20 to 30. (c), (d) and (e) The Lorenz
data (thin line) and the output series (dots) of the 3-2b-
22-3b model run 7 and 3-2b-29-3b run 3.

attained by about half of the runs. The optimal solu-
tion with the lowest MSE value of 9.0 is from the
7-2b-27-7b model. At the 7 levels from 70 to 10
hPa, the correlation of the output and target series
are 0.867, 0.969, 0.986, 0.993, 0.991, 0.990 and
0.977, respectively, and the root mean square er-
rors (RMSE) are 3.26, 3.23, 2.61, 2.07, 2.56, 2.85
and 3.99. The averaged correlation and RMSE of
the seven layers are 0.968 and 2.94, superior to
those from the reconstruction by the leading two
principal components of 0.945 and 4.25 (Wallace et
al. 1993) and by 3-hidden-layer NLPCA with a cir-
cular bottleneck neuron of 0.957 and 3.73 (Hamilton
and Hsieh, 2002). The two bottleneck series are out
of phase, varying in both amplitude (Fig. 10a) and
phase (Fig. 10b). The variations of the phase show
cycles of 23-35 months in length (Fig. 10b).

6. Conclusions

This study has found that the non-uniqueness
and overfitting problems in the 3-hidden-layer
NLPCA, an under-determined model, are well al-
leviated by the simplified 2-hidden-layer NLPCA, as
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FIG. 9: (a) The scatterplots of the bottleneck series of
the 3-2b-22-3b model run 7 (circles) and the 3-2b-29-3b

run 3 (crosses). (b), (c) and (d) The scatterplots of the
output series of 3-2b-22-3b run 7 and the Lorenz data. (b)
q1l , p1l versus q2l , p2l . (c) q1l , p1l versus q3l , p3l . (d) q2l , p2l

versus q3l , p3l .

demonstrated by different datasets - the sea sur-
face temperature anomaly over the tropical Pacific
Ocean, the Lorenz chaotic system and the QBO
wind.
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