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Abstract
This study focuses on the retrieval of liquid precipitation from the synergetic
use of both TRMM Microwave Imager (TMI) and Precipitation Radar (PR).
Rain rates are retrieved from TMI measurements with two different statistical
approaches developed on the same database. This database is made of measured
data obtained through co-localisation of the TMI brightness temperatures and
the rain rates from PR. The main advantage of such a database is its represen-
tativeness which is theoretically perfect.
An emerging statistical tool for remote sensing is the Self Organizing Map
(SOM). Algorithms proposed by Kohonen have been used to obtain this map.
SOM maps allow the projection of measured brightness temperatures into a two
dimensional space. The obtained map is topologically ordered, that is to say:
the spatial location of each neuron corresponds to a particular domain or feature
of input data. SOM algorithm is thus applied to TMI measurements and the
neurons have been labeled with corresponding PR rain rate. The labeled map
is used for rain rate retrieval.
A bayesian classifier is also used for comparison. It provides with a retrieved rain
rate by calculating a weighted average of the rain rates stored in the database.
The weighting is proportional to the distance in the brightness temperature
space between the stored and the measured vector. A series of parameters are
tuned because they are extremely difficult to estimate. This makes the classifier
somehow supervised, as opposed to the SOM.
The two algorithms will be compare in terms of general performances (bias and
error variances) and also in terms of topology of the rain field on a case study.

1 Introduction

Rain is an important parameter of the atmosphere because it relates to the
energy cycle. Rain measurement is essential for improving the understanding
of a wide variety of processes such as climate change, hydrology, meteorology,
or for the improvement of weather forcasting by means of data assimilation.
On the other hand, only satellite measurements are available on a global basis
over ocean. The Visible/IR sensing from space does not permit direct mea-
surement of rain quantities, but are more useful for cloud coverage estimation.
The advantge of using the microwave portion of the spectrum is that microwave

1



Table 1: Pixel sizes as a function of frequency
Channel 10 GHz 19 GHz 21 GHz 37 GHz 85 GHz

Resolution (km) 63x37 30x18 23x18 16x9 7x5

radiation penetrates clouds and interracts strongly with liquid hydrometeores.
The TRMM satellite is the first mission to carry a passive (TMI radiometer)
and an active (PR radar) microwave instruments together.

PR provides vertical profile of reflectivity at 14 GHz. The TMI measures
brightness temperatures at different frequencies : 10.65, 19.35, 21.3, 37.0, 85.5
GHz, polarized both vertically and horizontally but for the 21 GHz channel
which is only polarized vertically. TMI swatch is about 600 km large while the
PR one is about 200 km. The radiometer is thus particularly useful to obtain
global rainfall maps. However, numerous difficulties exist to retrieve the surface
rain rate from the radiometric brightness temperatures. In fact, radiometric
measurements are representative of a measure of the total column of atmo-
sphere within the field of view. The physical basis is that the radiation incident
upon a radiometer antenna is a frequency dependent complex function of the
vertical profiles of: atmospheric temperature, pressure, water vapor, and cloud
liquid water, liquid and ice precipitation. Other parameters, such as the size
of hydrometeor droplets and characteristics of the earth surface emission and
reflectivity, must also be considered. The difficulties generally encountered to
perform surface rain retrieval are due to the complexity and the non-linearity
of this relationship. Moreover, the presence of hiden parameters (such as ocean
surface characteristics or temperature profiles) increases the difficulty. Multi-
frequency measurements are thus useful to take into account the contribution
of these different components. However, the variation of the spatial resolution
of the different channels (see Table 1) introduces noise in using all the channel
to retrieve surface rain corresponding to a particular resolution.

Most retrieval methods needs the use of a database of brightness tempera-
tures associated with corresponding surface rain to overcome this highly under-
determined problem. The database will contain the implicit physics that links
the vertical profiles of precipitation with the “only” 9 measurements. This can
be done through simulation in computing the brightness temperature associated
with possible atmospheric profiles (e.g. Kummerow et al., 1996 and Olson et
al., 1996). The main difficulty is to obtain a wide and representative set of
atmospheric profiles with an horizontal resolution that allows the simulation
of the variation of the spatial resolution of the different channels ; and also
with knowledge concerning the microphysic of the differents hydrometeor (rain-
drop size distribution, melting layer,. . . ) to allow the simulation of the higher
frequency channel.

In this study, our main objective is to compare two different retrieval meth-
ods based on classification algorithms. We thus decided to develop the two
methods on the same database, using the specificity of the TRMM satellite. In
fact the database is obtain from co-located observation of surface rain rate and
brightness temperatures. The surface rain rate is measured with PR reflectiv-
ity profiles and brightness temperature are measured with TMI. Studies have
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proven the consistency between PR and TMI measurements (e.g. Viltard et
al., 2000). The main disadvantage of this approach is that the quality of the
obtained retrieval method is highly dependent of the quality of surface rain rate
deduced from PR measurements.

2 Characteristics of the data base

The TMI and the PR instruments are observing the earth surface under very
different geometry. The PR is a cross-track scanning radar (±17 degrees off-
nadir), leading to an almost- regular grid at the Earth’s surface with a pixel
roughly every 4.5 km in both cross- and along-track direction. On the center of
PR swath, the radar bins reach the earth surface but on the edges of the swath,
the minimum altitude of a measurement is about 1.5 km due to contamination
by ground clutter of the lower bins. The TMI is a conical scanning instrument
with a constant incident angle at the surface (52.8 degrees for the beam centr-
ers) with the pixel size dependng dramatically on the frequency. The distance
between two pixel centers in the same scan is 9.1 km at the low frequencies while
the distance between two scans is about 13.9 km. Only the PR pixels from the
center of the swath are kept, minimizing the risks of erroneous rain rates due
to poorly corrected surface echoes.

The remaining brightness temperature vectors are affected with the PR-
estimated surface rain rate, averaged over a circular area of 12.5 km radius
surrounding the TMI pixels center. Whithin such a circle there are about 20
PR pixels. This average represents approximately the resolution of the 37 GHz
channel and corresponds approximately to the spatial resolution of the Gprof
or 2A12 algorithms (Kummerow and Giglio, 1996 and Kummerow et al., 2001).

The PR is an attenuated radar that requires a complex processing account-
ing also for beamfilling errors and drop-size distribution hypotheses. In this
study we use a k − R relationship presented in Ferreira et al. (2001) and very
close to the standard algorithm known as 2A25 (Iguchi et al., 2000). A quite
complete description of the TRMM instruments and standard algorithms can
be found in Kummerow et al. (2000).

The resulting database is made of about 60,000 rain rates and their asso-
ciated brightness temperature vectors. These profiles are distributed all over
the tropical belt covered by TRMM (±35 degrees latitude). They are collected
over a winter (February) and a Summer (May) month. Contamination by land
and/or coast is filtered. One might notice that the PR sensitivity threshold is
about 17 dBZ, which means the radar cannot detect rain below ≈0.1 mm.hr−1.
This has no impact on our study but should be considered if one wanted to
estimate the retrieval error to some ground truth. Also, because the rain at 37
GHz-pixel resolution is the average of about 20 PR pixels, the database contains,
indeed, rainrates below 0.1 mm.hr−1.
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3 Description of the retrieval methods

3.1 SOM-based Technique (SBT)

A co-located data base is used to train a Self Organizing Map (SOM) as proposed
by Kohonen (1982). Each data used is a nine-dimensional vector made of the
nine brightness temperatures. A representation of the whole data set (100,000
vectors) with 2D map of 25x25 neurons is generated. Each of the 625 neu-
rons corresponds to a cluster of neighbor data of the input space. The number
of data retained in each cluster depends on the density of the considered cluster.

In fact SOM of Kohonen is a vector quantization algorithm in which a set
of unlabelled data vectors in a n-dimensional space (here n is equal to 9) is rep-
resented by a set of n-dimensional reference vectors which are linked according
to a topological order. This order is defined by the map whose cells are discrete
points of a reduced 2-dimensional space. Kohonen algorithm is a non-linear
projection of the discrete space of the cells (the map) into the n-dimentional
data space in which each cell corresponds to a reference vector. The main char-
acteristics of this algorithm is to preserve the topological order, two adjacent
cells are mapped into two close reference vectors. This can be view as a vector
quantization with a neighboring constraint.

The obtain map can be used in classification tasks, combining supervised
and unsupervised learning. This is done by labeling each cell of the map using
labels. In our case we have a large amount of 100,000 labelled data, they allow
us to determine a consistent classifier. Each cell of the map Ci being labeled us-
ing the mean rain rate Ri computed on the set of training data assigned to this
cell. After the labeling process we can observe a set of cells Ci having the same
label Ri; this corresponds to identical surface rain observed in different meteoro-
logical situation, which leads to different brightness temperature measurements
because of heterogeneities, microphysics, . . . The labeled map can thus be used
as a retrieval method. Each pattern (composed of the nine brightness temper-
atures at different frequency and polarization) is assigned to its nearest cell Cj
of the map and takes the label Rj of this cell Cj . So the labeled map can be
used as a ”hard” classifier.

This method present the advantage of being very simple and rapidly imple-
mented. Only the first step (the training step) is time consuming. The labeling
step and the use of the obtained map as a retrieval algorithm is very fast. More-
over, recent developments of probabilistic SOM, which approximates the density
distribution of the data with a mixture of normal distribution can be used to
improve this method Yacoub et al. (2000) in obtaining a more accurate and
soft classifier, it will be thus possible to propose different rain rate with their
related probabilities.

3.2 Bayes-Monte Carlo approach (BMC)

This retrieval algorithm is based on the Bayes theorem as extensively described
in Kummerow et al. (1996, 2001) and Olson et al. (1996). The probability
that a given rain profile W is associated with a set of measured brightness
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temperatures TObs can be expressed as:

E(W ) = 1
A

∫ ∫ ∫
. . .

∫
Wj exp [−0.5 (TObs − TDbase(Wj))

T (O +M)−1

(TObs − TDbase(Wj))] dW (1)

where TDbase is the brightness temperature vector set in the database associated
with the rain profile Wj , and O is the observation error covariance matrix and
M is the error covariance matrix of the PR rain rates. A is a normalization
factor defined as:

A =
∫ ∫ ∫

. . .

∫
exp [−0.5 (TObs − TDbase(Wj))

T (O +M)−1

(TObs − TDbase(Wj))] dW (2)

Finally, this expression is reduced using the Monte-Carlo method where the
integral in 1 is evaluated over a large number of realizations of the retrieval
parameters. It is also assumed that the O and M are diagoonal, i.e the errors
are uncorrelated. Hence:

W =
∑

k∈Dbase

Wk

N
exp

∑
i=1,9

−0.5
1
σ2
i

(TObsi − TDbasei)2

 (3)

N is the re-written form of A, easily deduced from (2). The real function that
is minimized actually uses the polarization signal to minimize the surface and
thus the beamfilling effect. Then, 3 becomes:

W =
∑

k∈Dbase

Wk

N
exp

∑
i=1,5

−0.5
1
σ2
i

(∆TObsi −∆TDbasei)
2

 (4)

where ∆TObsi = TV erticalObsi − THorizontalObsi and i = 1 stands for 10 GH
z channel, i = 2 stands for 19 GHz channel, etc . . . For the specific case of
21 GHz that exist only in the vertical polarization, we simply have ∆TObs3 =
TV erticalObs3. The BMC algorithm for instance is sensitive to the σi in 4 which
are set empirically. The method works somehow as a classifier, close to the SBT
in essence which is the reason why a comparison is interesting.

4 Results

Hereafter, two types of comparisons are performed. The first one summarizes
the statistical properties of the two algorithms, the second one displays a real
rain field. This allows to compare the objective performances, but also the final
appearance of the rain field and its spatial coherence.

4.1 Statistical comparison on a wide test data base

The database for this first series of test is generated from profiles also collected
in May 2001 and February 1998. It contains about 20800 rain rates collected
between ±39 degrees. The distribution is natural with a strong representation of
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Table 2: Statistics for the Neural network on the test database

Rain Range Error Bias Error Standard Deviation RMS of the Relative Error
(mm.hr−1) (mm.hr−1) (mm.hr−1) (%)

0.0 - 0.5 0.44 0.73 1476.
0.5 - 1.0 0.57 1.30 200.
1.0 - 2.0 0.78 1.87 144.
2.0 - 3.0 1.06 2.56 113.
3.0 - 4.0 1.00 2.87 88.
4.0 - 5.0 0.70 3.20 74.
5.0 - 6.0 0.13 3.42 63.
6.0 - 8.0 -0.56 4.07 60.
8.0 - 10.0 -1.59 4.71 55.
10.0- 15.0 -3.54 5.08 51.
15.0- 20.0 -6.40 7.26 56.
20.0- 35.0 -9.58 9.70 56.
TOTAL 0.41 2.44 983.

Table 3: Statistics for the Bayesian method the test database

Rain Range Error Bias Error Standard Deviation RMS of the Relative Error
(mm.hr−1) (mm.hr−1) (mm.hr−1) (%)

0.0 - 0.5 0.42 0.38 202.
0.5 - 1.0 0.35 0.52 85.
1.0 - 2.0 0.36 0.81 61.
2.0 - 3.0 0.29 1.18 49.
3.0 - 4.0 0.18 1.60 46.
4.0 - 5.0 -0.02 1.97 44.
5.0 - 6.0 -0.21 2.45 45.
6.0 - 8.0 -0.36 3.69 54.
8.0 - 10.0 -1.20 4.91 56.
10.0- 15.0 -2.44 6.30 56.
15.0- 20.0 -6.71 7.20 58.
20.0- 35.0 -6.58 10.81 57.
TOTAL 0.048 2.23 -NA-
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low to moderate rain rates (below 5 mm.hr−1). For both methods, the retrieval
is performed on this test database and the results are summarized in Table 2
for the SBT and in 3 for the BMC.

We can see from these two tables that the results are very close in terms of
performances, either for the bias or for the error standard deviation. At this
stage, the BMC is actually a more advanced version and thus its parameters
are more optimized which might eventually give some better results on some of
the cases. Both algorithms are indeed overestimating the rain at the low end
of the spectrum and underestimating at the high end. The RMS of the relative
errors might seem high but they maximize error accounting for both the bias
and standard deviation for each class of rain.

4.2 Comparison on a Hurricane case

At this point, it is important to check the horizontal texture or the retrieved
rain field. An excellent score in terms of bias might exhibit a very poor structure
of the rain field which is accpetable for climatological studies at large scale, but
unacceptable for instantaneous retrievals.

Hurricanes have a major human and economical impact and thus their fore-
cast in terms of trajectory and evolution is very critical. They are known to be
poorly represented in global forecast models and they are difficult to observe
because they start over oceanic regions most of the time. This is where space-
borne sensors are of interest and particularly passive microwave radiometers.
On the other hand, hurricane are complex situation where the very strong sur-
face wind make it really difficult to develop a sea surface model for emissivity.
Furthermore, the rain field is made of structures that can be at the very limit
of spaceborne passive radiometer resolution.

Hurricane Bonnie was observed on 26 August 99 near the US coasts. It was
a moderate hurricane with a wide eyewall at landfall. A strong asymetry in
the rain intensity can be noticed on the North-Western quadrant, under the
influence of the coast.

Fig. 1 shows the brighntess temperatures at 85H (85 GHz, Horizontal po-
larization), at 10H and at 37H, where the blue and green colors represents the
coldest temperatures and the red to dark to light grey represent respectively
the warmer temperatures. It presents also the rain as seen by the PR but av-
eraged at the 37 GHz resolution, using the same color convention for the rain
rates (green to red to light grey represents increasing rates). The 85H exhibits
mostly the cold signature of scattering by precipitation ice in the convective
regions over a warm background. 10H and 37H represent the warm emissivity
signal of rain over a cold ocean background, with eventually for higher rain rates
the scattering of dense ice (at 37H).

One can also notice the large differences in terms of structure resolution
between the different channels and how they are correlated to the rain rate ob-
served by the radar. One will then understand that the effects of resolution
differences will add up to the effects of non-linearity between the variables to
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Figure 1: Brightness temperature at 85 GHz H (a), 10 GHz H (b) and 37 GHz
H (c) and PR rain at 37 GHz resolution (d)

(a) (b)

(c) (d)

retrieve and the brightness temperature.

The two retrieved rain fields are presented Fig. 2 (a) for the SBT and (b) for
the BMC. One can notice that both rain field are coherent spatially with the
large scale structures of the storm quite properly retrieved. The SBT sets to 0
mm.hr−1 values that are unproperly learned in the training phase. These are
represented by the dark blue spots spread in the middle of light blue and light
greens. Indeed, a few cases of hurricanes are set in the learning database but
they certainly are a minority both in terms of rain intensity and in terms of
background oceanic emissivity. This is may be were the SBT classifier is show-
ing its pros and cons at once: its inability to extrapolate results that were not
learned. On the other hand, the BMC shows that it can always find a solution
even if this solution might be questionable in terms of realism.

The bias with radar (which is our reference here) over the whole domain are
respectively 1.65 mm.hr−1 for the SBT and 1.25 mm.hr−1 for the BMC. These
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Figure 2: surface rain rate for (a) the SBT and (b) the BMC

(a) (b)

values are higher than those over the 20800 profiles, probably because of the
difficulty of the hurricane case with its special condition. Notice also that the
SBT was not trained to retrieve rain over land and/or coast and this is why the
upper left part of the hurricane is not showed on Fig. 2(a).

Finally Fig. 3 is a comparison of a transect along the line made of grey
crosses on Fig. 1(d). This transect allows us to see the variations of the rain
field along the nadir line. We can see that the agreement between the two
estimators and the reference is extremely variable, with sometimes substansial
overestimations and sometimes excellent agreement. It is also interesting to see
that it seems for some of the local maxima that there is a spatial shift which
might be due to the two instruments geometry difference.

5 Conclusion

This study is trying to demonstrate the equivalence of Self-Organizing Map
Based Techniques (SBT) and Bayes-Monte Carlo approaches (BMC). Although
the two algorithms presented here are still under developpement, they exhibit
results which are very close in terms of bias and structure: both underestimate
the high rain rates while overestimating the lower ones. These two algorithms
were trained on the same data base built from co-located TRMM Precipita-
tion Radar and Microwave Imager, getting rid of the usual representativeness
problem. Doing so, we also got rid of the many problems related to the di-
rect radiative transfer simulation particularly in the ice phase. On the other
hand, we have no or a very few control on the physics of the problem and we
have to assume that the radar is providing us with a “good” estimate of the rain.
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Figure 3: Comparison of rain rates retrieved along a transect. Blue line stands
for BMC, red line stand s for SBT and black line is the radar reference

Some substansial improvements are going on right now for both algorithms.
For the neural network approach, the database used was kept as is, which means
a natural distribution of rain was used, emphasizing the lower rain rates. A spe-
cific work on the histogram of both the rain rates and the brightness temperature
will be done. The Bayesian technique suffers from its uncertainties in adjusting
the weightings or variance/co-variance error matrices. They are now adjusted
empirically instead of adapted to the specific database in use. This will be im-
plemented in the future.

For the two algorithims some more research will also be performed in trying
to reduce the high variance of the brightness temperatures relative to rain rate
by using scattering and emissivity indexes to get rid of hidden parameters such
as background temperatures of surface emissivity biases.
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