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Figure 1 - Joint distribution of forecasts and

observations
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1. INTRODUCTION

Reliable Ensemble Streamflow Prediction

(ESP) requires unbiased ensemble precipitation

forecasts as input to hydrologic forecast models.

Because meteorological forecast information may

contain a variety of different kinds of biases, an ESP

preprocessing system is used in NW S River Forecast

Center (RFC) operations to remove these biases.

These statistical preprocessing techniques have

param eters (coefficients and exponents) that must be

calibrated.  The calibration varies spatially and

seasonally throughout an RFC area of responsibility.

In mountainous areas the calibration may vary with

each hydrologic sub-basin.  An historical

meteorological forecast archive of forecasts

representative of current operational forecasts is

needed to provide data to calibrate statistical

preprocessor parameters.  Typically the length of

available archive is quite limited so uncertainty in the

parameter estimates may pose important limitations

on the skill of hydrologic forecasts.  This paper

analyzes the effect of archive duration on the

accuracy of preprocessor  parameter estimates and

on the skill and reliability of the adjusted short range

ensemble precipitation forecasts  

2. NWS SHORT-RANGE PREPROCESSOR AND

ENSEMBLE PRECIPITATION GENERATOR

The initial strategy to develop short range (1-

5 days) ensemble precipitation forecast applications

for AHPS is to synthesize ensemble forecasts from

existing deterministic forecasts produced by the

Hydrometeorological Prediction Center (HPC) and

used in existing RFC forecast operations.  Ultim ately,

the strategy is to apply ensemble forecasts from

regional and global ensemble forecast systems

operated at the National Centers for Environmental

Prediction (NCEP).  But hydrologic application of
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 atmospheric ensemble forecasts requires substantial

additional research and development (including

defining a role for human forecasters to add value)

before a re liable operational system can be

implemented.

The basic strategy of the simplified short

range ensemble precipitation preprocessor is to use

a simple statistical model to account for the

uncertainty in existing deterministic  forecasts.  Th is

strategy is being applied to temperature, or other

variables, as well as precipitation.  Uncertainty in

precipitation forecasts is particularly challenging to

represent because of the interm ittent nature of

precip itation and because of the significant scale-

dependency of the skill of the forecasts.

An example joint distribution of precipitation

forecasts and observed precipitation events is shown

in Figure 1.  The data in F igure 1 can be used to

create a statistica l model of the joint distribution of

forecasts and observations.  This joint distribution can

then be used to create a conditional distribution for

the observations, given a forecast.  And this

conditional distribution can be used to create an

ensemble of precipitation events by re-scaling

observed historical events .  Th is is essentia lly a

Bayesian approach and Bayesian techniques can be

used to estimate the model parameters. 
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Figure 2 - Joint distribution transformed to

standard normal deviate anomaly-space

The joint distribution statistical model has

seven parameters that must be estimated from

historical data.  Most (6) of these can be estimated by

considering the marginal distributions of the forecasts

and the observations.  The marginal distributions

represent the climatology of the forecasts and the

observations.  These marginal distributions can be

parameterized.  Climatological statistics such as

probability of precipitation (POP), mean of the

conditional distribution of precipitation (given

precipitation occurs) (CAVG) and the coefficient of

variation of the conditional distribution (CCV) can be

used to estimate param eter values of th is

parameterization.  

Historical values of CCV for observed

precipitation tend to be near or slightly more than 1.0.

Accordingly, a W eibull distribution usually fits the

observed precip itation data fairly well.  The

distribution of precipitation forecasts depends on the

sk ill of the forecast.  If the skill is very high the

forecast distribution may resemble the precipitation

distribution.  As forecast skill diminishes, the mean of

the forecast approaches the climatological mean, the

CCV diminishes and the POP increases.  W e

generally use either a Gamm a or Weibull distribution

to parameterize the forecast climatology.  Note that

when CCV = 1.0, the W eibull, Gamma and

Exponential distr ibutions are identical.  So if CCV is

near 1.0 the exact choice of dis tribution is not a major

issue.

The seventh parameter of the joint

distribution model is a correlation parameter.  The

climatological distributions are used by the m odel to

map observed and forecast values into a special

“anomaly” space where the climatology of the

anomalies are standard normal deviates.  This

anomaly space is illustrated in Figure 2 where

variables u and v are standard normal deviate

transformations of forecasts and observations,

respectively.  The curves shown in Figure 2 are

contours of the bivariate standard normal joint density

function f(u,v).

Correlation parameter (RHO) is the

correlation coefficient of this transformed joint

distribution.  Th is param eter is the only parameter that

represents the skill (i.e. resolution) of the forecast.

The other parameters control the reliability or

calibration of the forecast.

The conditional distribution of future

precipitation to be expected for a given forecast is

derived by first transforming the forecast to a forecast

anom aly (variable u in Figure 2) using the marginal

forecast climatology distribution.  Then a conditional

distribution, f(v|u), for the future precipitation anomaly

is derived from the bivariate standardized normal

probability distribution using parameter RHO.  Finally

the conditional future precipitation anomaly

distribution, f(v|u), is transformed to a conditional

precipitation distribution using the marginal

precipitation climatology distribution.

Note that this approach compensates for

sys tem atic  differences between prec ipita tion

forecasts and precipitation observations.

3.  NWS PARAMETER ESTIMATION STRATEGY

The parameters to be estimated from

archived forecasts and observations are:

Forecast C limatology:

POPfcst

CAVG fcst

CCV fcst

Observed Climatology

POPObs

CAVGObs

CCVObs

Correlation Parameter

RHO

These statistics  vary spatially, seasonally and with

forecast lead tim e.  All of the statis tics are scale

dependent .  An important application decision is the

space and tim e scale at which this technique will be

applied.  These scales should be large enough to

capture most of the skill in the forecast.  One of the

limitations of this technique is that forecast skill for

aggregate precipitation amounts larger than the

application scale is lost.  Accordingly, ensemble
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forecasts will tend to over estimate uncertainty at

larger scales.  Conversely at sm aller scales there is

more uncertainty than would be included in a

deterministic down scaling of the ensemble members.

Accordingly, some kind of statistical down scaling

may be useful to increase uncertainty at smaller

scales.

Initial NW S application strategy is to apply the

technique directly to  each RFC sub-basin and to each

6-hour computational time step.  The conditional

prec ipitation forecasts are used to re-scale historical

events independently for each sub-basin and each

time step.  But the internal pattern structure of the

historical events assures that the Pearson rank

correlation structure of all properties of the ensembles

are exactly the same as in the historical data.  This

includes joint relationships between precipitation and

temperature and between any arbitrary combination

of points in space and time - anywhere in the U.S.

But issues of scale dependency of the forecast skill

need to be evaluated and better understood.

Since the length of historical archive is very

limited (only a few years), it is essential to use

“neighboring” values in time (and possibly space) to

estimate model parameters.  Smoothed climatological

statistics for each RFC sub-area are estimated using

a 45-day window both before and after a given day of

the year.  This assures smoothly varying parameter

values seasonally during the year.  Additional spatial

smoothing of the local seasonally varying param eters

may be desirable and is being considered.

Initial experience with the technique has been

positive (Mullusky et al, J5.5 this Conference), but

there is som e evidence that param eter uncertainty

may be large enough to limit the sk ill of the hydrologic

forecasts.  In one case the loca l parameters for one

of the RFC sub-areas had to be replaced by the

parameters for a neighboring sub-area.

One way to investigate the effect of limited

archive data on param eter uncertainty and the

subsequent effect of parameter uncertainty on

forecast resolution (skill) and reliability is through

numerical simulation experiments.  That approach is

used in this study as described below.

4.  DESIGN OF A NUMERICAL SIMULATION

SYSTEM

A system to conduct numerical simulation

experiments has been developed and used to test the

potential effect of limited historical archives of

forecasts and observations on param eter uncertainty

and on ensemble forecast verification statistics.  The

rationale behind this system is that if the statistical

relationship between forecasts and observations is

similar to that assumed by the NWS ESP short range

preprocessor and ensem ble generator, then it can be

used to simulate the way data are archived and used

to forecast future events.  The numerical simulation

process is as follows:

4.1 Assume “True” Param eters

Parameter uncertainty and degradation of

ensemble forecast verification statistics resulting from

limited length of  historical archives depends on the

climatology of events and on the skill of the

deterministic meteorological forecast.  For a given

climatology and level of forecast sk ill the numerical

simulation system can estimate the effect of length of

historical data archive.  Therefore, values of the “true”

model parameters must be assumed and are

provided as input to the system.  Many different

assumptions can be made and the system will provide

results for each assumption.  Below, results will be

presented for one typical set of assumed m odel

parameters.

These assumed parameters define the “true”,

but unknown, forecast environment.

4.2 Generate Long Reference Set of Observations

and Forecasts

The joint distribution model described above

is used to generate a very long set of pairs of

forecasts and observations consistent with the model.

This reference data set represents an unconstrained

length arch ive that would never be practical to

achieve but where there is very little effect of

parameter uncertainty on the results.  Statistics of the

reference data are computed to assure that the data

are consistent with the assumed m odel parameter

values.  

Each reference forecast is then used to

generate a precipitation ensemble forecast.  These

ensemble forecasts are then verified using the

observed reference values.  The reference verification

statistics represent the limit of how well the forecast

system can be expected to perform for the given

climate scenario and underlying skill (defined by

RHO) of the deterministic meteorological forecasts.

Therefore, the results of subsequent simulation

experiments will be compared to the results of the

reference data set.
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4.3 Simulate Replicate Archive Samples of

Observations and Forecasts

Different lengths of historical archive are

considered.  For each archive length, many replicate

simulations are made. Parameter values for each

replicate archive for each archive duration are

computed.

4.4 Estimate Parameter Values from Sam ple

Archive and Simulate Future Forecast Operations

Each set of simulated archive data are used

to estim ate  parameter values and to simulate future

forecast operations that could occur using each

estimated parameter set.  The forecast simulation

involves generating an additional long period of

simulated future determ inist ic forecast and

observation pairs consistent with the “true “ model

parameter values.  Then, estimated parameters from

the simulated archive are used together with the

additional long period of sim ulated future forecasts to

generate precipitation ensemble forecasts.  The

ensemble forecasts are then verified using

observations from the additional long period of

simulated forecast and observation pairs that are

consistent with the “true” forecast environment.

4.5  Compute Summ ary Statistics for Each

Archive Record Length

Sum mary parameter and ensemble

verification statistics are aggregated over the set of

replicate archives for each archive record length.  As

the arch ive record length increases parameter

uncertainty is expected to decrease, uncertainty in

verification statistics should diminish and average

values of verification statistics should improve.

5.  ENSEMBLE FORECAST VERIFICATION

STATISTICS

Several different ensemble verification statistics were

used in this study to illustrate how parameter

uncertainty may affect forecast resolution and

reliability.  This is not meant to be an exhaustive

analysis of all possible verification statistics.  The few

used in this study are explained briefly below.

5.1 Ensemble Mean Skill Score

A statistic that is closely related to the

correlation coeffic ient is the Nash-Sutcliffe efficiency

statistic.  In the verification literature this statistic

would be called a skill score because the value of the

statistic  is scaled by the climatological variance of the

observations (W ilks, 1995).  The statistic  is

                        (1/n)j (ENSavg-OBS)2

EnsSS  =  1  -     -------------------------------   (1)

           (1/n)j  (OBS-OBSavg)2

where,

ENSavg = Ensemble mean

OBS = Corresponding observation

OBSavg = Average observation

and the summation is taken over the set of n

ensemble forecasts for a given starting time and

forecast period.

If the forecasts are unbiased (I e. forecast

mean and standard deviation is the same as

observed) then EnsSS is equal to the square of the

correlation coefficient.  In that case EnsSS is a direct

measure of forecast resolution.  Because EnsSS is

affected by forecast bias, it is a composite measure

of resolution and re liability.

This skill score can be applied to measure the

sk ill relationship between the mean of the entire

ensemble and the observed value.   This measures

the aggregate skill of the forecast.  It also can be

applied to the conditional part of the forecast that

gives the conditional probability of precipitation if

precipitation should occur.  The conditional ensem ble

mean skill score CEnsSS measures the skill

relationship between the mean of the conditional

distribution of precipitation and the observed value,

conditioned on events when precipitation occurs.

5.2 Brier Skill Score

A measure of accuracy of the forecast

probability of precipitation is the Brier score (Wilks,

1995).  The Brier skill score is defined as

BSS  =  1 - BS / BSC                              (5)

where BS is the Brier score,

BS = (1/n) j  (p i - I(obsi))
2    (6)

p i = probability of event i occurring

I(obs i) = indicator variable (1 if event occurs, else 0)

n = num ber of events
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and BSC is the climatologically expected value of BS,

BSC = p * (1-p)   (7)

where p is the climatological probability of the event.

5.3 Measures of Forecast Reliability

The reliability of probability forecasts

(conditioned on precipitation occurring) can be

assessed by constructing what is known as a

reliability diagram (W ilks,1995).  The re liability

diagram  is created as follows.  First, each ensemble

forecast is used to find the forecast probability of

observing a value less than or equal to the observed

value for that forecast. Then, these probabilities are

sorted in increasing order.  If the forecasts were

perfectly reliable these probabilities would form a

uniform distribution.  Therefore, points on the uniform

probability distribution are plotted on the forecast

probability axis of the reliability diagram and the

observed relative frequency is taken from the forecast

probability associated with the observation.

The magnitude of the vertical deviation of the

observed relative frequency from the 45-degree

diagonal is a measure of reliability (Wilks, 1995).  In

this study we  using the RMS value of this deviation

as a measure of reliability of the forecast probabilities,

RMScens  =   [ (1/n) j  (Fobs - Funiform)2  ]1/2   (3)

where n is the num ber of ensemble forecasts

corresponding to observed precipitation events.

A similar reliability diagram can be

constructed to measure the reliability of probability of

precipitation (POP) forecasts.  This involves use of

several POP forecast categories.   The corresponding

statistic  is RMSpop  that measures the RMS deviation

of observed relative frequency of precipitation

occurring from the mean POP forecast value for each

category.

6. EXAMPLE SIMULATION RESULTS

An example numerical simulation was made

for a given climatological scenario and for a re latively

highly skillful short term prec ipitation forecast.  The

assumed parameters are in Table 1.

These parameters are typical of da ily

precipitation.  The daily mean precipitation would be

0.20 * 10 = 2 mm/day or 730 mm /yr.  In this example,

the forecast and observed climatologies are assumed

to be the same, but they could have been different

without major effect on the results.  The anom aly  

Table 1 - Assumed Parameter Values

Parameter Value

POPobs 0.20

CAVGobs 10.0

CCVobs 1.0

POPfcst 0.20

CAVGfcst 10.0

CCVfcst 1.0

RHO 0.8

correlation between forecasts and observations is

assumed to be 0.80.  The effect of parameter

uncertainty for less skillful forecasts has not been

studied.

Different lengths of forecast archive were

considered in m ultip les of 30-day (i.e. monthly)

increments.  The multiples were taken as the

geom etric series of 1,4,16,64 and 256 months.  It is

assumed that there are 30 independent events in

each month.  The number of replicates of parameter

values for each archive duration was decreased with

increasing arch ive duration because uncertainty

diminishes with increasing archive length.  Therefore,

fewer replicates are needed to achieve the same

accuracy in the simulation result.  The number of

replicates followed the reverse geom etric series with

256 replicates for a 1-m onth archive and only 1

replicate for the 256 month archive.

The reference data set also had a duration of

256 months.  All of the results from the simulated 256

day archive were very close to the results for the

reference data set so it is clear that the uncertainty in

the longest simulated archive is negligible.

The main interest in this study is in how

parameter uncertainty caused by limited length of

forecast data archives affects forecast performance.

One illustration of the effect of limited archive length

on model parameter is shown in Figure 3.    The

standard deviation of error in param eter CAVGfcst,

expressed as percent of the mean, decreases from

45 percent for a 1-month equivalent length arch ive to

less than 10 percent for an arch ive of 12-months or

more.

Parameter uncertainty has two effects on

ensem ble verification statistics.  One is to diminish

the mean value of skill scores.  The other is to

introduce uncertainty in skill scores so there is a
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Figure 5 - Effect of archive length on conditional

ensemble skill score (CEnsSS)

Figure 6 - Effect of archive length on Brier sk ill

score (BSS)

Figure 4 - Effect of archive length on
ensemble skill score (EnsSS)

substantial chance a given archive could reduce the

sk ill score by chance owing to the shortness of the

archive.  It is possible to estimate both effects by

mak ing replicate simulations for each archive

duration.  

Figure 4 shows the “reliable” value of EnsSS

vs archive length.  The “reliable” skill score shown in

Figure 4 is equal to the mean skill score minus one

standard deviation of the skill score uncertainty.  If

EnsSS is negative it would be better to replace the

entire precipitation ensemble forecast with the

climatological distribution than to use the ensemble

derived from the atmospheric forecast 

Figure 5 shows how the “reliable” value of the

sk ill score for predicting the mean value of the

conditional part of distribution of precipitation,

CEnsSS, depends on arch ive length.  This figure

shows that sk ill in short range ensem ble precipitation

forecasts of probability of precip itation amounts can

be very significantly reduced unless there is adequate

archive data to estimate m odel parameters.  If

CEnsSS is negative, it would be better to replace the

conditional part of the ensemble forecast with the

climatological distribution of wet precipitation events.

Figure 6 shows how the “reliable” value of

 the Bier skill score (BSS) depends on the archive

record length.  This is the average BSS minus one

standard deviation of the uncertainty in the BSS.

Figure 7 shows how the reliability of

cond itional precip itat ion probabil ity forecasts

(RMScens) varies with archive length.  The

probability RMS error in this figure is equal to the

mean error plus one standard deviation of the

uncertainty in the error.

Figure 8 shows how the reliability of

probability of precipitation forecasts RMSpop

depends on archive length.  The RMS values shown

are the mean error plus one standard deviation of the

uncertainty in the error

Together, Figures 3-8 suggest that at least a

one year-equivalent length of independent daily

observations is needed to reduce the effect of

parameter uncertainty to a m inim um  level.  This result

depends on the assumed clim atology and on

deterministic forecast skill.  Because climatology and

forecast skill vary seasonally, it is not poss ible to get

365 independent daily observations from a single

calendar year archive.  At best it may be poss ible to

combine days together in a 90 day window to reduce

the required actual archive length to about 4 calendar

years.
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Figure 8 - Effect of archive length on reliability of

probability of precipitation forecasts (RMSpop)

Figure 7 - Effect of archive length on reliability of

conditional precipitation probabilities (RMScens)

7.  CONCLUSIONS

Reliable ensemble streamflow prediction

requires unbiased ensemble precipitation forecasts as

input to hydrologic forecast models.  Statistical

preprocessing techniques can remove biases in

meteorological forecasts to meet this requirement.

But these techniques have parameters that must be

estimated using historical forecast archives.  The

resulting preprocessing techniques are only valid if

they are applied to forecasts  from the same system

that produced the archive.

A numerical simulation procedure can be

used to assess how limited archive length influences

both parameter uncertainty and skill of ensem ble

precipitation forecasts derived from  deterministic

meteorological forecasts.

About 4 calendar years of forecast archive

are required to m inimize the effect of uncertainty in

parameter values on forecast verification statistics.

Sk ill in forecasts of conditional probability of

precipitation (CEnsSS) are very sensitive to short

lengths of forecast archive.  These results depend on

the assum ed climatology and determ inis tic forecast

sk ill.  Additional study is needed to understand how

the required archive length depends on these

assumptions.
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