JP3.7

SHORT-RANGE ENSEMBLE PRECIPITATION FORECASTS FOR NWS ADVANCED

HYDROLOGIC PREDICTION SERVICES (AHPS): PARAMETER ESTIMATION ISSUES

John Schaake*, Mary Mullusky, Edwin Welles and Limin Wu
Hydrology Laboratory, Office of Hydrologic Development, National Weather Service (NWS), Silver Spring

1. INTRODUCTION

Reliable Ensemble Streamflow Prediction
(ESP) requires unbiased ensemble precipitation
forecasts as input to hydrologic forecast models.
Because meteorological forecast information may
contain a variety of different kinds of biases, an ESP
preprocessing system isusedin NW S River Forecast
Center (RFC) operations to remove these biases.
These statistical preprocessing techniques have
parameters (coefficients and exponents) thatmust be
calibrated. The calibration varies spatially and
seasonally throughout an RFC area of responsibility.
In mountainous areas the calibration may vary with
each hydrologic sub-basin. An historical
meteorological forecast archive of forecasts
representative of current operational forecasts is
needed to provide data to calibrate statistical
preprocessor parameters. Typically the length of
available archive is quite limited so uncertainty in the
parameter estimates may pose important limitations
on the skill of hydrologic forecasts. This paper
analyzes the effect of archive duration on the
accuracy of preprocessor parameter estimates and
on the skill and reliability of the adjusted short range
ensemble precipitation forecasts

2. NWS SHORT-RANGE PREPROCESSOR AND
ENSEMBLE PRECIPITATION GENERATOR

The initial strategy to develop shortrange (1-
5 days) ensemble precipitation forecast applications
for AHPS is to synthesize ensemble forecasts from
existing deterministic forecasts produced by the
Hydrometeorological Prediction Center (HPC) and
used in existing RFC forecast operations. Ultimately,
the strategy is to apply ensemble forecasts from
regional and global ensemble forecast systems
operated at the National Centers for Environmental
Prediction (NCEP). But hydrologic application of
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atmospheric ensemble forecasts requires substantial
additional research and development (including
defining a role for human forecasters to add value)
before a reliable operational system can be
implemented.

The basic strategy of the simplified short
range ensemble precipitation preprocessor is to use
a simple statistical model to account for the
uncertainty in existing deterministic forecasts. This
strategy is being applied to temperature, or other
variables, as well as precipitation. Uncertainty in
precipitation forecasts is particularly challenging to
represent because of the intermittent nature of
precipitation and because of the significant scale-
dependency of the skill of the forecasts.

An example joint distribution of precipitation
forecasts and observed precipitation events is shown
in Figure 1. The data in Figure 1 can be used to
create a statistical model of the joint distribution of
forecasts and observations. This jointdistribution can
then be used to create a conditional distribution for
the observations, given a forecast. And this
conditional distribution can be used to create an
ensemble of precipitation events by re-scaling
observed historical events . This is essentially a
Bayesian approach and Bayesian techniques can be
used to estimate the model parameters.
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Figure 1 - Joint distribution of forecasts and
observations
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The joint distribution statistical model has
seven parameters that must be estimated from
historical data. Most (6) of these can be estimated by
considering the marginal distributions of the forecasts
and the observations. The marginal distributions
represent the climatology of the forecasts and the
observations. These marginal distributions can be
parameterized. Climatological statistics such as
probability of precipitation (POP), mean of the
conditional distribution of precipitation (given
precipitation occurs) (CAVG) and the coefficient of
variation of the conditional distribution (CCV) can be

used to estimate parameter values of this
parameterization.
Historical values of CCV for observed

precipitation tend to be near or slightly more than 1.0.
Accordingly, a Weibull distribution usually fits the
observed precipitation data fairly well. The
distribution of precipitation forecasts depends on the
skill of the forecast. If the skill is very high the
forecast distribution may resemble the precipitation
distribution. As forecast skill diminishes, the mean of
the forecastapproaches the climatological mean, the
CCV diminishes and the POP increases. We
generally use either a Gamma or Weibull distribution
to parameterize the forecast climatology. Note that
when CCV = 1.0, the Weibul, Gamma and
Exponential distributions are identical. So if CCV is
near 1.0 the exact choice of distribution is not a major
issue.

The seventh parameter of the joint
distribution model is a correlation parameter. The
climatological distributions are used by the model to
map observed and forecast values into a special
“anomaly” space where the climatology of the
anomalies are standard normal deviates. This
anomaly space is illustrated in Figure 2 where
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Figure 2 - Joint distribution transformed to
standard normal deviate anomaly-space

variables u and v are standard normal deviate
transformations of forecasts and observations,
respectively. The curves shown in Figure 2 are
contours of the bivariate standard normal joint density
function f(u,v).

Correlation parameter (RHO) is the
correlation coefficient of this transformed joint
distribution. This parameteris the only parameter that
represents the skill (i.e. resolution) of the forecast.
The other parameters control the reliability or
calibration of the forecast.

The conditional distribution of future
precipitation to be expected for a given forecast is
derived by first transforming the forecast to a forecast
anomaly (variable u in Figure 2) using the marginal
forecast climatology distribution. Then a conditional
distribution, f(v|u), for the future precipitation anomaly
is derived from the bivariate standardized normal
probability distribution using parameter RHO. Finally
the conditional future precipitation anomaly
distribution, f(v|u), is transformed to a conditional
precipitation distribution using the marginal
precipitation climatology distribution.

Note that this approach compensates for
systematic differences between precipitation
forecasts and precipitation observations.

3. NWS PARAMETER ESTIMATION STRATEGY

The parameters to be estimated from
archived forecasts and observations are:

Forecast Climatology:
POPfcst
CAVG;
CCVfcst

Observed Climatology
POPqy
CAVG s
CCVqps

Correlation Parameter
RHO

These statistics vary spatially, seasonally and with
forecast lead time. All of the statistics are scale
dependent. An important application decision is the
space and time scale at which this technique will be
applied. These scales should be large enough to
capture most of the skill in the forecast. One of the
limitations of this technique is that forecast skill for
aggregate precipitation amounts larger than the
application scale is lost. Accordingly, ensemble



forecasts will tend to over estimate uncertainty at
larger scales. Conversely at smaller scales there is
more uncertainty than would be included in a
deterministic down scaling ofthe ensemble members.
Accordingly, some kind of statistical down scaling
may be useful to increase uncertainty at smaller
scales.

Initial NW S application strategyisto apply the
technique directly to each RFC sub-basin and to each
6-hour computational time step. The conditional
precipitation forecasts are used to re-scale historical
events independently for each sub-basin and each
time step. But the internal pattern structure of the
historical events assures that the Pearson rank
correlation structure of all properties ofthe ensembles
are exactly the same as in the historical data. This
includes joint relationships between precipitation and
temperature and between any arbitrary combination
of points in space and time - anywhere in the U.S.
But issues of scale dependency of the forecast skill
need to be evaluated and better understood.

Since the length of historical archive is very
limited (only a few years), it is essential to use
“neighboring” values in time (and possibly space) to
estimate model parameters. Smoothed climatological
statistics for each RFC sub-area are estimated using
a 45-day window both before and after a given day of
the year. This assures smoothly varying parameter
values seasonally during the year. Additional spatial
smoothing of the local seasonally varying parameters
may be desirable and is being considered.

Initial experience with the technique has been
positive (Mullusky et al, J5.5 this Conference), but
there is some evidence that parameter uncertainty
may be large enough to limit the skill of the hydrologic
forecasts. In one case the local parameters for one
of the RFC sub-areas had to be replaced by the
parameters for a neighboring sub-area.

One way to investigate the effect of limited
archive data on parameter uncertainty and the
subsequent effect of parameter uncertainty on
forecast resolution (skill) and reliability is through
numerical simulation experiments. That approach is
used in this study as described below.

4. DESIGN OF A NUMERICAL SIMULATION
SYSTEM

A system to conduct numerical simulation
experiments has been developed and used totestthe
potential effect of limited historical archives of
forecasts and observations on parameter uncertainty

and on ensemble forecast verification statistics. The
rationale behind this system is that if the statistical
relationship between forecasts and observations is
similar to that assumed by the NWS ESP short range
preprocessorand ensemble generator, then it can be
used to simulate the way data are archived and used
to forecast future events. The numerical simulation
process is as follows:

4.1 Assume “True” Parameters

Parameter uncertainty and degradation of
ensemble forecastverification statistics resulting from
limited length of historical archives depends on the
climatology of events and on the skill of the
deterministic meteorological forecast. For a given
climatology and level of forecast skill the numerical
simulation system can estimate the effect of length of
historical data archive. Therefore, values of the “true”
model parameters must be assumed and are
provided as input to the system. Many different
assumptions can be made and the system will provide
results for each assumption. Below, results will be
presented for one typical set of assumed model
parameters.

These assumed parameters define the “true”,
but unknown, forecast environment.

4.2 GenerateLong Reference Set of Observations
and Forecasts

The joint distribution model described above
is used to generate a very long set of pairs of
forecasts and observations consistent with the model.
This reference data set represents an unconstrained
length archive that would never be practical to
achieve but where there is very litlle effect of
parameter uncertainty on the results. Statistics of the
reference data are computed to assure that the data
are consistent with the assumed model parameter
values.

Each reference forecast is then used to
generate a precipitation ensemble forecast. These
ensemble forecasts are then verified using the
observedreference values. The reference verification
statistics represent the limit of how well the forecast
system can be expected to perform for the given
climate scenario and underlying skill (defined by
RHO) of the deterministic meteorological forecasts.
Therefore, the results of subsequent simulation
experiments will be compared to the results of the
reference data set.



4.3 Simulate Replicate Archive Samples of
Observations and Forecasts

Different lengths of historical archive are
considered. For each archive length, many replicate
simulations are made. Parameter values for each
replicate archive for each archive duration are
computed.

4.4 Estimate Parameter Values from Sample
Archiveand Simulate Future ForecastOperations

Each set of simulated archive data are used
to estimate parameter values and to simulate future
forecast operations that could occur using each
estimated parameter set. The forecast simulation
involves generating an additional long period of
simulated future deterministic forecast and
observation pairs consistent with the “true “ model
parameter values. Then, estimated parameters from
the simulated archive are used together with the
additional long period of simulated future forecasts to
generate precipitation ensemble forecasts. The
ensemble forecasts are then verified using
observations from the additional long period of
simulated forecast and observation pairs that are
consistent with the “true” forecast environment.

4.5 Compute Summary Statistics for Each
Archive Record Length

Summary parameter and ensemble
verification statistics are aggregated over the set of
replicate archives for each archive record length. As
the archive record length increases parameter
uncertainty is expected to decrease, uncertainty in
verification statistics should diminish and average
values of verification statistics should improve.

5. ENSEMBLE FORECAST VERIFICATION
STATISTICS

Severaldifferent ensemble verification statistics were
used in this study to illustrate how parameter
uncertainty may affect forecast resolution and
reliability. This is not meant to be an exhaustive
analysis of all possible verification statistics. The few
used in this study are explained briefly below.

5.1 Ensemble Mean Skill Score

A statistic that is closely related to the
correlation coefficient is the Nash-Suficliffe efficiency

statistic. In the verification literature this statistic
would be called a skill score because the value of the
statistic is scaled by the climatological variance of the
observations (Wilks, 1995). The statistic is

(1/n)2_(ENSavg-OBS)?
EnsSS = 1 - (1)
(1/n)2 (OBS-OBSavg)?

where,

ENSavg = Ensemble mean
OBS = Corresponding observation
OBSavg = Average observation

and the summation is taken over the set of n
ensemble forecasts for a given starting time and
forecast period.

If the forecasts are unbiased (I e. forecast
mean and standard deviation is the same as
observed) then EnsSS is equal to the square of the
correlation coefficient. In thatcase EnsSS is a direct
measure of forecast resolution. Because EnsSS is
affected by forecast bias, it is a composite measure
of resolution and reliability.

This skill score can be applied to measure the
skill relationship between the mean of the entire
ensemble and the observed value. This measures
the aggregate skill of the forecast. It also can be
applied to the conditional part of the forecast that
gives the conditional probability of precipitation if
precipitation should occur. The conditional ensemble
mean skill score CEnsSS measures the skill
relationship between the mean of the conditional
distribution of precipitation and the observed value,
conditioned on events when precipitation occurs.

5.2 Brier Skill Score

A measure of accuracy of the forecast
probability of precipitation is the Brier score (Wilks,
1995). The Brier skill score is defined as
BSS = 1-BS/BSC (5)
where BS is the Brier score,
BS = (1/n) X (p; - I(obs,))’* (6)
p; = probability of eventi occurring

I(obs;) = indicator variable (1 if event occurs, else 0)
n= number of events



and BSC is the climatologically expected value of BS,
BSC =p * (1-p) (7)
where p is the climatological probability of the event.
5.3 Measures of Forecast Reliability

The reliability of probability forecasts
(conditioned on precipitation occurring) can be
assessed by constructing what is known as a
reliability diagram (Wilks,1995). The reliability
diagram is created as follows. First, each ensemble
forecast is used to find the forecast probability of
observing a value less than or equal to the observed
value for that forecast. Then, these probabilities are
sorted in increasing order. If the forecasts were
perfectly reliable these probabilities would form a
uniform distribution. Therefore, points on the uniform
probability distribution are plotted on the forecast
probability axis of the reliability diagram and the
observedrelative frequency is taken from the forecast
probability associated with the observation.

The magnitude of the vertical deviation of the
observed relative frequency from the 45-degree
diagonal is a measure of reliability (Wilks, 1995). In
this study we using the RMS value of this deviation
as ameasure of reliability of the forecast probabilities,
RMScens = [(1/n) 2 (Fobs - Funiform)?1"2  (3)
where n is the number of ensemble forecasts
corresponding to observed precipitation events.

A similar reliability diagram can be
constructed to measure the reliability of probability of
precipitation (POP) forecasts. This involves use of
several POP forecastcategories. The corresponding
statistic is RMSpop thatmeasures the RMS deviation
of observed relative frequency of precipitation
occurring from the mean POP forecastvalue for each
category.

6. EXAMPLE SIMULATION RESULTS

An example numerical simulation was made
for a given climatological scenario and for a relatively
highly skillful short term precipitation forecast. The
assumed parameters are in Table 1.

These parameters are typical of daily
precipitation. The daily mean precipitation would be
0.20* 10 =2 mm/day or 730 mm/yr. In this example,
theforecastand observedclimatologies are assumed
to be the same, but they could have been different
without major effect on the results. The anomaly

Table 1 - Assumed Parameter Values

Parameter Value
POPobs 0.20
CAVGobs 10.0
CCVobs 1.0
POPfcst 0.20
CAVGfcst 10.0
CCVfcst 1.0
RHO 0.8

correlation between forecasts and observations is
assumed to be 0.80. The effect of parameter
uncertainty for less skillful forecasts has not been
studied.

Different lengths of forecast archive were
considered in multiples of 30-day (i.e. monthly)
increments.  The multiples were taken as the
geometric series of 1,4,16,64 and 256 months. ltis
assumed that there are 30 independent events in
each month. The number of replicates of parameter
values for each archive duration was decreased with
increasing archive duration because uncertainty
diminishes with increasing archive length. Therefore,
fewer replicates are needed to achieve the same
accuracy in the simulation result. The number of
replicates followed the reverse geometric series with
256 replicates for a 1-month archive and only 1
replicate for the 256 month archive.

The reference data set also had a duration of
256 months. All of the results from the simulated 256
day archive were very close to the results for the
reference data set so it is clear that the uncertainty in
the longest simulated archive is negligible.

The main interest in this study is in how
parameter uncertainty caused by limited length of
forecast data archives affects forecast performance.
One illustration of the effect of limited archive length
on model parameter is shown in Figure 3. The
standard deviation of error in parameter CAVGfcst,
expressed as percent of the mean, decreases from
45 percent for a 1-month equivalent length archive to
less than 10 percent for an archive of 12-months or
more.

Parameter uncertainty has two effects on
ensemble verification statistics. One is to diminish
the mean value of skill scores. The other is to
introduce uncertainty in skill scores so there is a



substantial chance a given archive could reduce the
skill score by chance owing to the shortness of the
archive. It is possible to estimate both effects by
making replicate simulations for each archive
duration.

Figure 4 shows the “reliable” value of EnsSS
vs archive length. The “reliable” skill score shown in
Figure 4 is equal to the mean skill score minus one
standard deviation of the skill score uncertainty. If
EnsSS is negative it would be better to replace the
entire precipitation ensemble forecast with the
climatological distribution than to use the ensemble
derived from the atmospheric forecast

Figure 5 shows how the “reliable” value of the
skill score for predicting the mean value of the
conditional part of distribution of precipitation,
CEnsSS, depends on archive length. This figure
shows that skill in short range ensemble precipitation
forecasts of probability of precipitation amounts can
be very significantly reduced unless there is adequate
archive data to estimate model parameters. |If
CEnsSS is negative, it would be better to replace the
conditional part of the ensemble forecast with the
climatological distribution of wet precipitation events.

Figure 6 shows how the “reliable” value of
the Bier skill score (BSS) depends on the archive
record length. This is the average BSS minus one
standard deviation of the uncertainty in the BSS.

Figure 7 shows how the reliability of
conditional precipitation probability forecasts
(RMScens) varies with archive length. The
probability RMS error in this figure is equal to the
mean error plus one standard deviation of the
uncertainty in the error.

Figure 8 shows how the reliability of
probability of precipitation forecasts RMSpop
depends on archive length. The RMS values shown
are the mean error plus one standard deviation of the
uncertainty in the error

Together, Figures 3-8 suggest that at least a
one year-equivalent length of independent daily
observations is needed to reduce the effect of
parameter uncertainty to aminimum level. This result
depends on the assumed climatology and on
deterministic forecast skill. Because climatology and
forecast skill vary seasonally, it is not possible to get
365 independent daily observations from a single
calendar year archive. At best it may be possible to
combine days togetherin a 90 day window to reduce
the required actual archive length to about4 calendar
years.
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Figure 4 - Effect of archive length on
ensemble skill score (EnsSS)
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Figure 5 - Effect of archive length on conditional
ensemble skill score (CEnsSS)
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Figure 6 - Effect of archive length on Brier skill

score (BSS)
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Figure 7 - Effect of archive length on reliability of
conditional precipitation probabilities (RMScens)
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Figure 8 - Effect of archive length on reliability of
probability of precipitation forecasts (RMSpop)

7. CONCLUSIONS

Reliable ensemble streamflow prediction
requires unbiased ensemble precipitation forecasts as
input to hydrologic forecast models. Statistical
preprocessing techniques can remove biases in
meteorological forecasts to meet this requirement.
But these techniques have parameters that must be
estimated using historical forecast archives. The
resulting preprocessing techniques are only valid if
they are applied to forecasts from the same system
that produced the archive.

A numerical simulation procedure can be
used to assess how limited archive length influences
both parameter uncertainty and skill of ensemble
precipitation forecasts derived from deterministic
meteorological forecasts.

About 4 calendar years of forecast archive
are required to minimize the effect of uncertainty in
parameter values on forecast verification statistics.
Skill in forecasts of conditional probability of
precipitation (CEnsSS) are very sensitive to short

lengths of forecast archive. These results depend on
the assumed climatology and deterministic forecast
skill. Additional study is needed to understand how
the required archive length depends on these
assumptions.
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