JP3.8

RETROSPECTIVE VERIFICATION OF ENSEMBLE STREAMFLOW PREDICTION (ESP):

A CASE STUDY
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1. INTRODUCTION

The goal of Ensemble Streamflow Prediction
(ESP) verification is to give users, forecasters and
forecast system managers information to understand
the strengths and weaknesses of ESP forecasts.
Users may be interested in forecasts for specific
locations. Forecasters may be interested in recent
forecasts over their area of responsibility. Forecast
system managers may want to see evidence that
programmatic decisions are leading to system
improvements.

Verification of ESP requires large sample
sizes to obtain reliable verification statistics. This
means that verification of predictions for individual
forecast locations and for specific forecast situations
requires a retrospective verification approach. This
sample size requirement implies that verification of
probabilistic forecasts for a current year are possible
only for many forecast points over a large area. But
such current-year verification statistics may not meet
user needs for specific locations. Using the
NWS/OHD Extended Streamflow Prediction
Verification System (ESPVS), (Riverside
Technology,Inc.1999), a retrospective verification
study of ESP for the site of Bayard (BAYI4), IOWA on
the Raccoon River, a tributary of Des Moines River,
was undertaken.

Wilks (1995) has proposed a framework of
attributes of forecast verification statistics. These
attributes define different facets of forecast accuracy.
Two attributes of special interest in this study are
reliability and resolution. Reliability measures show
how well forecasts are calibrated. Resolution
measures how well observed events agree with
calibrated forecasts.

The procedure of ESP has been explained by
Day (1985). The essence of ESP is to predict the
ensemble of future streamflow hydrographs that
would occur given the current initial conditions and
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an ensemble of future forcing inputs (e.g.
precipitation, temperature and potential evaporation).

Retrospective verification requires an archive
of meteorological forecasts as well as an archive of
observed streamflow. Because the main objective of
this study is to introduce a suggested approach to
ESP verification, a simplified approach is taken to the
future forcing inputs. It will be discussed below how
to deal with the meteorological forecast archive
requirement in the operational implementation of the
proposed procedures. This study, however, assumes
that the past climatology is representative of future
forcing. Historical time series of precipitation and
temperature are used for the required ensemble
forcing. ESP generates a trace of future streamflow
that is an estimate of what would have occurred in the
past if the initial conditions had been the same as
they are at present. Each year of past data is a
member of the ESP.

2. RETROSPECTIVE ESP

Retrospective ensemble streamflow
predictions are produced using the ESPVS for a
number of initial forecast times and different forecast
periods for the BAY4 forecast point. For the initial
conditions at a given initial time in each historical
year, a set of streamflow hydrographs, as illustrated
in Figure 1 are generated. Each hydrograph is the
result of different meteorological forcing. In this case,
in a different historical year.

Each streamflow hydrograph is analyzed to
produce a single forecast value such as the
streamflow volume during the 30 day period following
the initial condition.

The information that is contained in a set of
retrospective ESP forecasts from the ESPVS is
illustrated in Table 1. The forecasts are for the
volume of streamflow for the next 30 days starting
from initial conditions on March 15. The units of the
volume data values are cubic meters per second -
days.

Each row in Table 1 corresponds to an ESP
forecast beginning on March 15 of a different year, the
first being 1951; the last, 1990, for a total of 40 ESP
forecasts. Each ESP forecast in Table 1 has



ENSEMBLE MEMBER YEAR

ENS ENS

1951 1952 1953 1954 1955 1956 1957 1958 1959 ... 1990 OBS AVG STD
1951 304.2 423.2 247.6 143.9 148.3 68.3 84.3 59.3 360.1.. 653 365.7 209.3 120.9
1952 429.5 567.4 367.4 251.5 253.1 131.5 172.7 131.7 489.5..132.6 604.0 312.7 137.5
1953 261.1 381.2 207.7 104.1 104.0 292 415 294 315.7.. 30.3 201.9 167.8 120.0
1954 76.6 106.5 58.8 29.6 332 10.6 19.0 10.8 899 .. 11.8 329 525 357
1955 203.0 316.3 152.6 54.2 535 109 213 11.1 2552.. 120 535 124.8 104.5
1956 436 640 325 111 123 36 48 38 532 .. 48 32 276 229
1957 80.7 165.0 59.0 279 284 47 127 49 1093.. 58 525 587 512
1958 444.3 591.2 382.7 262.4 264.7 129.9 180.6 130.0 509.7 ... 130.9 120.3 335.6 146.9
1959 91.6 1479 711 395 43.0 164 26.6 16.5 106.9.. 17.5 1349 645 437
1990 529.0 668.3 465.8 348.4 349.9 218.3 268.0 218.5 589.0...219.4 192.1 420.5142.9
OBS 365.7 604.0 201.9 329 535 3.2 525 120.3 134.9..192.1
AVG 353.6 463.6 308.4 220.7 222.1 125.3 162.0 119.2 4104 ... 123.5
STD 237.3 278.2 225.1 193.0 195.1 143.1 169.6 141.8 253.6 ... 149.7

Table 1- Example ESP Results

40 members. Each member is the volume of
streamflow that would have occurred in the forecast
year as a result of both the initial conditions in the
forecast year and the meteorological forcing that
occurred in the year associated with that member.
Member values for each ESP forecast are in the
same row and vary across the columns of Table 1.
The year associated with the forcing for each member
is given as a column label at the top of each column.
The initial condition dates are given as the row labels
for each ESP forecast. Note that the data displayed
in Table 1 is compressed so that only some of the
data values for the full 1951-1990 period actually
appear in the Table.

generated time series: in.cond. 0301/1951

N

streamflow log scale
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x= time in day

Figure 1 - Example ESP time series, in CMS

Statistics of the data in Table 1 are given in
the margins of the Table. The observed streamflow
volume is given for each year as well.

The diagonal elements of Table 1 are the
model simulated volumes for the same year as the
observed meteorological forcing. Figure 2 shows that
these simulated volumes (1951-1990) agree very well
with the observed volumes. The correlation
coefficient between the simulated and
observed volumes is 0.97. There appears to be a
slight tendency for the largest observed volumes to be
greater than simulated.
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Figure 2 - Simulated vs Observed volume

Each row of Table 1 gives the retrospective
ESP forecast that would have been made in the year
corresponding to thatrow. The statistics at the end of
each row are the ensemble mean and standard
deviation of the ESP forecasts. Figure 3 compares



the ensemble mean with the observed value for each
year. The correlation coefficient is 0.82. There is a
slight tendency for the largest observed volumes to be
greater than the corresponding ensemble means.
Note that the range of ensemble mean volumes is
almost as great as the range of observed volumes.
The scatter of points in Figure 3 is caused by
uncertainty in the future meteorological forcing. The
strong tendency for the observed volumes to vary with
the ensemble mean occurs because the observed
volumes are more sensitive to the initial conditions
than to the meteorological forcing.

Figure 4 compares the ensemble standard
deviation to the ensemble mean volume. Note that
for small values of the ensemble mean the ensemble
standard deviation increases roughly in proportion to
the ensemble mean. But at larger values of the
ensemble mean, the standard deviation reaches a
plateau.
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Figure 3 - ESP ensemble mean vs observed
volume

Each column of Table 1 shows how the
streamflow volume for a given year’s forcing depends
on initial conditions. Statistics at the bottom of each
column give the mean and standard deviation of the
estimated streamflow volume that would have
occurred for the given year’s forcing if the initial
conditions had been the same as they were in
different years corresponding to the different rows.

Figure 5 compares the mean simulated
volume for each column with the observed volume for
the year corresponding to the forcing for that year.
Note that it is the initial conditions that vary within a

given column while the forcing is the same for every
value in the column. The scatter of points in Figure 5
occurs because the observed volume is very sensitive
to the initial conditions and the column means are not

as sensitive to the meteorological forcing. The
correlation coefficient is 0.45.
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Figure 4 - Ensemble standard deviation vs
ensemble mean volume
Observed Volume is Sensitive to Initial Conditions
1400
3
1200 |
1000
Q
H
2 8004 .
>
? .
£ 600 1
2
°
400 |
200 - . . L4
% e ’
) Za < 3 S ‘ ‘ ‘
0 200 400 600 800 1000 1200 1400
Average Volume for Given-year Forcing (1951-1990)

Figure 5 - Observed volume is sensitive to initial
conditions



The cumulative probability distribution
functions of the observed, simulated and ensemble
member volumes are presented in Figure 6. These
distributions are very similar but there is a tendency
for the largest observed values to be greater than the
simulated and the ensemble member values. The
distribution of ensemble member values is very close
to the distribution of simulated values.
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Figure 6 - Cumulative distribution functions of
observed, simulated and ensemble member
streamflow volumes
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Figure 7 - Observed vs simulated cumulative
distribution volumes

The tendency for the model to underestimate
larger than average volumes is illustrated in Figure 7
where corresponding pairs are shown of observed
and simulated volumes for the same probability level

of the marginal distributions shown in Figure 7.

Table 1 can be sorted so that the ensemble
mean values increase and so that the column means
also increase. Sorting by the ensemble means
causes the ensembles to be sorted from dry to wet
initial conditions rather than chronologically. Sorting
by the column totals causes the ensemble members
to be sorted from dry to wet years of meteorological
forcing rather than chronologically. The effect of this
sorting is to produce a streamflow volume response
surface that is relatively smooth. Contours of this
response surface are shown in Figure 8.

Left to right cross-sections of the surface in
Figure 8 correspond to an ESP for a given year. This
cross-section shows how different meteorological
conditions affect the distribution of streamflow
volumes for given initial conditions. The initial
conditions vary from dry to wet as the cross-section is
moved upward with increasing value of the vertical y-
axis. The value of the y-axis is an index that points to
the year corresponding to the initial conditions that
increase from dry to wet.

Cross-sections taken from bottom to top show
how initial conditions affect the distribution of
streamflow volumes that would be produced by fixed
meteorological forcing as initial conditions vary from
dry to wet. The corresponding meteorological forcing
varies from dry to wet as the position of the cross-
section is moved from left to right.

Figure 8 shows that the response surface is
much more sensitive (i.e. the gradient of the surface
changes more) to initial conditions than to the
meteorological forcing. Meteorological forcing has
almost no effect for very dry initial conditions. If the
contours of this surface were parallel to the horizontal
axis, the ESP forecasts would depend
only on the initial conditions and there would be no
uncertainty in the forecasts. If the contours were
parallel to the vertical axis: (l) initial conditions would
have no effect; (ii) ESP forecasts would depend only
on the meteorological forcing; (iii) the forecasts would
be the same every year; (iv) the uncertainty in the
forecasts would be the same as the climatological
uncertainty of the streamflow volume, and (v) there
would be no skill in the forecast. It follows then that
the slope of the contours in Figure 8 is a measure of
the local skill in the forecast. Horizontal contours
have complete skill. Vertical contours have no skill.

Figure 8 can be used to put a current
operational ESP forecast into perspective relative to
ESP forecasts for other years. The ensemble mean
of the current ESP forecast can be used to find the
position on the vertical axis corresponding to the
forecast location for the current year’s forecast. One



could then draw a line across Figure 8 at that location
and the distribution of values of the ensemble
members of the current ESP forecast would lie along
thatline and can be visually compared to forecasts for
other wetter or drier years.
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Figure 8 - Retrospective ESP streamflow
volume response surface

3. PROPOSED ESP VERIFICATION STATISTICS

Verification statistics are proposed to
measure various aspects of the accuracy of ESP
forecasts. One objective is to include statistics that
may be important to various users and that can be
applied to individual forecast points. Another is to
suggest statistics that are dimensionless so that they
potentially could be aggregated (using an appropriate
rule) to provide summary information for forecasters,
forecast developers and management. Also it may be
possible to form regional aggregates of some of these
statistics over large enough areas to get sufficiently
large samples of independent events.

3.1 Ensemble Mean Correlation Coefficient

A statistic that is a direct measure of forecast
resolution is the correlation coefficient between the
mean of each ensemble forecast and the observed
value. This statistic, by definition, is not affected by
biases in the mean or standard deviation of the
forecast. It's value is in the interval (-1,1). Zero
implies no skill relative to climatology. A value of 1
implies perfect correlation (But the forecast and
observed values are not necessarily the same
because of systematic biases.)

3.2 Ensemble Mean Skill Score

A statistic that is closely related to the
correlation coefficient is the Nash-Sutcliffe efficiency
statistic (EnsSS). In the verification literature (e.g.
Doggett, 1998) this statistic would be called a skill
score because the value of the statistic is scaled by
the climatological variance of the observations. The
statistic is

(1/n)(ESPavg-OBS)?
EnsSS = 1- (1)
(1/n)x (OBS-OBSavg)?

where,
ESPavg = Ensemble mean
OBS = Corresponding observation
OBSavg = Average observation

and the summation is taken over the set of n ESP
forecasts for a given starting time and forecast period.

If the forecasts are unbiased (in the mean)
and have minimum error variance, then EnsSS is
equal to the square of the correlation coefficient. In
that case EnsSS is a direct measure of forecast
resolution. Because EnsSS is affected by forecast
bias, it is a composite measure of resolution and
reliability.

3.3 Measures of Forecast Reliability

Two direct measures of reliability considered
in this study are the relative bias of the ensemble
mean forecast (B),

B = (1/n) *ESPavg / OBSavg - 1 (2)

and a root mean square error statistic that measures
the reliability of the ESP probability forecasts.

The reliability of probability forecasts can be
assessed by constructing what is known as a
reliability diagram (Wilks(1995)). An example
reliability diagram is illustrated in Figure 9 for
forecasts from Table 1. The reliability diagram is
created as follows. First, each ensemble forecast is
used to find the forecast probability of observing a
value less than or equal to the observed value for that
forecast. Then, these probabilities are sorted in
increasing order. If the forecasts were perfectly
reliable these probabilities would form a uniform
distribution.  Therefore, points on the uniform
probability distribution are plotted on the forecast
probability axis of Figure 9 and the observed relative



frequency is taken from the ESP probability
associated with the observation. In the example,
there is a tendency for the observations to occur more
frequently than expected by chance (because the
observations are actually slightly larger than expected
by the forecast model). This is consistent with the
tendency shown in Figures 2, 3, 6 and 7 for the model
to underestimate higher than average streamflow
volumes.

The magnitude of the vertical deviation of the
observed relative frequency from the 45-degree
diagonal in Figure 9 is a measure of reliability
(RMSrel). In this study, we propose using the RMS
value of this deviation as a measure of reliability of
the forecast probabilities.

RMSrel = ((1/n) = ((Fobs - Funiform)? )"2 (3)

A useful graphical tool, in addition to the
reliability diagram is the Talagrand diagram. The
Talagrand diagram is a plot of the number of times
the estimated probability of non-exceedance (or
exceedance) of each observation is found to occur in
different probability intervals. This is illustrated in
Figure 10 for March 15. The integral of the Talagrand
diagram is consistent with the reliability diagram. In
this case the Talagrand diagram shows a tendency to
underestimate the probability of large events
occurring.
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Figure 9 - Example reliability diagram

3.4 Heidke Skill Score

Verification of probability forecasts by the
NWS Climate Prediction Center is done using the
Heidke skill score (HSS). Probability forecasts are
made for events to occur in terciles corresponding to

below (B) near (N) and above (A) normal relative to
the climatological distribution of the observations.
Intervals of the forecast variable are defined so there
is a 1/3 chance, climatologically, of an event occurring
in each tercile. ESP forecasts can be used to make
categorical forecasts for below, near or above normal
forecasts by assigning the forecast to the tercile with
the highest forecast probability.
The Heidke skill score is defined as

HSS =(H-E)/(T -E) (4)
where
H= number of hits - a hit is defined as the

number of times the observed eventoccursin
the tercile with the highest forecast
probability, given that the forecast meets the
criteria to be included (see below)

T= number of forecasts - only forecasts where
the probability for below or above normal
exceeds a threshold level are included.

E= expected number of hits by chance (=1/3 T)
In this study, the threshold probability is set at

1/3. By adjusting this upward, it might be possible to
improve the Heidke skill score.

Talagrand Diagram for March 15
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Figure 10 - Talagrand diagram for March 15

CPC uses a probability threshold to classify
forecasts as either above (A) or below (B) normal. If
neither the above nor below normal probability values
exceed the threshold, the forecast is assumed not to
be distinguishable from climatology. Therefore, only
events where there is predicted to be some skill are
included in computing the skill score. Accordingly, it
may be possible to raise the tercile probability
threshold to identify areas (in the case of CPC) or



times (in the case of retrospective ESP) with higher
probability above or below average.

In a highly skillful ESP forecast, it might be
possible to distinguish near-normal forecasts from
climatology. This might occur for very short range
forecasts that are well calibrated and where the
forecast is highly dependent on initial conditions.
This could occur, for example, during streamflow
recessions.

In this study we prefer to maintain the CPC
application of the Heidke skill score and use the Brier
skill score to explore the relative skill in below, near
or above normal categorical forecasts.

3.5 Brier Skill Score

The Brier skill score (Doggett, 1998) is
defined as

BSS = 1-BS/BSC (5)
where BS is the Brier score,
BS = (1/n) = (p, - I(obs)))? (6)

p, = probability of event i occurring
I(obs,) = indicator variable (1 if event occurs, else 0)
n= number of events

and BSC is the climatologically expected value of BS,
BSC=p*(1-p) (7)

where p is the climatological probability of the event.
The Bier score is often applied to events that exceed
a given threshold. But it can also be applied to
categorical events. In this case we consider the three
tercile categories used by CPC. Accordingly, BSC =
(1/3)*(1 - 1/3)) = 0.2222 for each category.

4. EXAMPLE APPLICATION

The verification statistics proposed above are
applied to the forecast point Bayard (BAY14), IOWA
on the Raccoon River, a tributary of Des Moines
River. ESP forecasts for this location have been
made during the northern plains spring snow-melt
period for the past three years. BAYI4 is one of the
original forecast points in the NWS AHPS
demonstration project for the Des Moines river basin.
Retrospective ESP verification is done below for 30-
day volume forecasts for three different starting dates:
March 1, March 15 and April 1 The retrospective
forecast period is 1951-1990. Verification statistics

for these forecasts are given in Table 2.

The correlation coefficient and ensemble
mean skill score reach their maximum values on
March 15. This is when the initial conditions have
their maximum average effect on the forecast.

There is a 5 to 10 percent relative bias
depending on the forecast starting date. And there is
a small RMS bias in the probability forecasts. These
systematic biases could be removed by statistical
post-processing of the forecasts. If that were done,
the ensemble mean skill score would improve slightly
as well. But the correlation coefficient would remain
unchanged.

The Heidke and Brier skill scores for
categorical forecasts show interesting results. Unlike
the correlation coefficient and Ensemble skill score,
the Heidke skill score continues to increase from
March 1 to April 1.  We plan to study why that
happened. The Brier skill score helps us to
understand what part of the ESP probability forecast
tends to be the most skillful. In all 3 forecast periods,
the portion of the probability forecasts for above or
below normal are more skillful that the portion near
normal. This happens because more of the individual
ensemble probability forecasts tends to be distributed
over the near normal interval than over the above or
below normal intervals. When the distribution shifts
toward above or below normal, the corresponding
event tends to happen more often than expected by
chance.

Verification

Statistic March 1 | March 15 | April 1
Ensemble .71 .82 .65
Mean - Obs

Correlation

Ensemble

Mean Skill .50 .66 41
Score

Relative Bias -.05 -.09 -.08
RMS Error of

Probability .07 .08 .06
Forecast

Heidke Skill .225 .294 .339
Score

Brier Skill .208 .355 517
Scores by -.068 .078 .093
Tercile .500 .564 .255




Table 2 - Example ESP Verification Statistics for 30-
day streamflow volume forecasts for Bayard
(BAY14), IOWA on the Raccoon River

5. CONCLUSIONS

Retrospective verification of ESP can provide
useful information about ESP performance. Several
potentially useful verification statistics are proposed to
measure forecast resolution and reliability, both as
separate attributes of forecast accuracy and their joint
effect on the forecast. Aretrospective ESP response
surface was introduced as a way of creating a
graphical understanding of ESP forecast skill and of
placing any given ESP forecast in perspective to ESP
forecasts for wetter or drier years.

This study used historical climatological data
for meteorological forcing for the retrospective ESP
forecasts. If retrospective meteorological forecasts
were available for the entire retrospective period they
could have been used instead of the climatological
data. Of course that would have required a very long
archive of ensemble meteorological forecasts and
these forecasts would have needed to be integrated
into consistent forecast time series for the duration of
the ESP forecast time period. In practice, it will be
necessary to use more limited forecast archives for
forecasts for different durations into the future. This
will require long enough archives from a stable
forecast operation to accurately estimate the
climatological statistical properties of the
meteorological forecasts and it will require techniques
to simulate equivalent forecasts that could have
occurred before the archive began.

This study also brings up a question of how to
use the retrospective verification to improve the ESP
through statistical post processing. We will discuss
this problem in another paper.
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