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1. ABSTRACT1

A new software system for assessing the uncertainty
in short term river stage forecasts has been developed at
the Office of Hydrologic Development (OHD) of the
National Weather Service (NWS). This method explicitly
accounts for the uncertainty in the future precipitation and
temperature conditions, a major portion of the uncertainty
in the river stage forecasts. The method requires deriving
a forecast distribution from a given deterministic forecast
using the joint
distribution of historical forecasts and observations. Once
the forecast distribution is known, the climatological
distribution is mapped into the new forecast distribution to
create ensembles of precipitation and ensembles of
temperature. The existing Ensemble Streamflow
Prediction technique within the NWS River Forecast
System (NWSRFS) is used to generate stream flow
ensembles from the precipitation and temperature
ensembles. Using the system, the Mid-Atlantic River
Forecast Center (MARFC) has been producing forecast
ensembles for the Juniata river basin in Pennsylvania on
a daily basis since July 2002. Presented here are some
the results for the Juniata basin obtained during the
Summer and Winter. 

 2. INTRODUCTION

There are two primary sources of uncertainty in a
river forecast system; the future meteorological conditions
and the hydrological modeling. These uncertainties drive
the need for probabilistic forecasting. 

The portion of the NWSRFS that produces
probabilistic forecasts of streamflow and streamflow-
related variables is called the Ensemble Streamflow
Prediction (ESP) system. The original version of ESP
applied to long range forecasts by creating an ensemble
of streamflow traces using multiple years of historically
observed precipitation and temperature time series as
possible future meteorological realizations (Day, 1985).
The long-range forecasts were later enhanced by
integrating meteorological forecasts and climate outlooks
into the ESP System (Perica, S., 1998). OHD has now
created a new method to generate short term ensembles
to implicitly incorporate the skill of the short term

meteorological forecast (Herr et al., 2002). This work was
originally applied to precipitation forecasts.  Additional
work was required to handle short term temperature
ensembles which drive the winter snow hydrology
operations. Once the precipitation and temperature
ensembles are both generated with this new method, the
existing ESP technique can be used to generate short
term streamflow ensembles. This paper discusses the
application of this new method to generate the short term
temperature ensembles and the resulting streamflow
ensembles for the Juniata river basin in Pennsylvania.
This method, in collaboration with the forecasters at
MARFC, has been implemented for 10 forecast points on
the Juniata River since July 2002 and is currently being
tested on a daily basis. 

2. FORMULATION

The goal of this method is to create an ensemble of
meteorological inputs from a given deterministic forecast
of that meteorological variable. The theory and
formulation of this method is described in detail for
precipitation in Herr et al. (2002) and is summarized here
for temperature. 

Let X be the observed temperature with realization x,
and Y be the forecasted temperature with realization y.
Let fx be the density of X with a cumulative density
function Fx and fy be the density of Y with a cumulative
density function Fy. The goal is to be able to compute the
distribution of X given some forecast Y=y. To begin,
variates X and Y are transformed into normal space. That
is, variates Zx and Zy are defined so that 
zx = Q-1(Fx(x)) and zy = Q-1(Fy(y)), where Q is the standard
normal distribution. This transformation is referred to as
the normal quantile transform (NQT). Next, the density
N(zx,zy) is modeled as bivariate normal with standard
normal marginals and with parameter D, which is the
Pearson’s correlation coefficient between Zx and Zy. 

Modeling N with a bivariate normal density allows for
the conditional density function fc(x|Y=y) to be computed
as the conditional density Nc(zX/ZY=zY) which is known to
be normal with mean :=DzY and variance F2= (1-D2). This
form of the distribution can be viewed as the climatology
being shifted by the information contained in the forecast,
so that as the skill of the forecast decreases (i.e., as D
goes to 0), the conditional density NX|Y is just the marginal
distribution F. 
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3. APPLICATION

The method to implement the formulation described
in Section 2 to create short term streamflow ensembles is
threefold. First, in order to use historical data to construct
the distributions of Fx and Fy parameters describing the
distributions must be derived from the temperature data.
Second, once the calibrated parameters are in place the
method can be used to create temperature and
precipitation ensembles. Third, using the existing ESP
system with the new ensembles of temperature and
precipitation, streamflow ensembles can be generated.
The calibration of temperature parameters, creation of
temperature ensembles and creation of streamflow
ensembles are described in the following sections.

3.1 Calibration of Temperature Parameters

The calibration of the temperature parameters
needed to construct the distributions of Fx and Fy  was
complicated by the types of forecasted and observed
temperature data archived for the Juniata. Archives of
forecast temperatures included only point forecasts of
daily maximum and daily minimum temperatures for a
sparse network. Archived observed data included a 6-
hour time series of mean areal temperatures for each of
the basins of interest. 

The observed time series of 6-hour mean areal
temperature was derived from a mean areal maximum
and a mean areal minimum temperature with a fixed
diurnal cycle.  Since this fixed diurnal cycle was known, a
simple back computation was applied to the 6-hour time
series of mean areal temperatures to determine the mean
areal maximum and the mean areal minimum. Now, both
the forecast and observed temperature data had daily
maximum and minimum value, however the forecast
archive was of point values and the observed archive was
of mean areal values. To resolve this question, a
hypothetical station was created at the centroid of each
basin and using the NWSRFS methods of estimating
missing data a time series of maximum and minimum
daily temperature was created at this point. Point data
were compared to the mean areal maximum and minimum
temperature for that basin. This comparison is shown in
Figure 1 for the minimum daily temperature and Figure 2
for the maximum daily temperature for Huntingdon, PA.
The x-axis represents the maximum/minimum
temperature derived as a point estimate and the y-axis is
the maximum/minimum temperature derived from the
mean areal temperature. Because of the linearity around
the 45° line it was decided to use the maximum and
minimum temperature derived from the mean areal
temperature as this was an existing data source already
available at the RFCs.

In order to use historical data to construct
distributions Fx and Fy two statistics are needed: (1) the
daily average and (2) the daily coefficient of variation.
Because the statistics are noisy on a daily time step the

Figure 1: Comparison Between Areal Minimum
Temperature and Point Minimum Temperature for
Huntington.

Figure 2: Comparison Between Areal Maximum
Temperature and Point Maximum Temperature for
Huntington.

statistics are smoothed with a three component Fourier
series, then the average and coefficient of variation can
be used to estimate a distribution. For temperature the
distribution is assumed to be Gaussian. Figure 3 shows
an example of the smoothed coefficient of variation. The
final parameter needed for the calibration is the
correlation coefficient D between Zx and Zy. 

The historical data now consists of a forecasted and
observed maximum and minimum temperature value. The
formulation described in Section 2 can then be followed
for both variables thus creating a set of maximum
ensembles and a set of minimum ensembles. The two
sets of ensembles are then temporally disaggregated to
create a 6-hour time series of temperature ensembles.
The calibration statistics needed to create an ensemble of
maximum temperatures include; average maximum
observed temperature, coefficient of variation of maximum



observed temperature, average maximum forecasted
temperature, coefficient of variation of maximum
forecasted temperature, and the correlation between
maximum observed temperature and the maximum
forecasted temperature. The same set of statistics are
also needed for the minimum temperature. Although this
is a large number of parameters, since there are 365 sets
of statistics, they are computed off-line prior to forecast
time and the process is fully automated.  

Figure 3: Example of Smoothed vs Unsmoothed
Coefficient of Variation

3.2 Deriving Temperature Ensembles

The first step in deriving the temperature ensembles
is to compute a deterministic forecast of maximum and
minimum temperatures from the forecasted mean areal
temperature for the basin of interest.  This is
accomplished by back calculating the known fixed diurnal
cycle to the 6-hour time series to compute the forecasted
daily maximum and daily minimum. 

The second step is to calculate from the calibration
statistics and the deterministic forecast for both the
maximum and minimum temperature the conditional
distribution function FX|Y. FX|Y is the conditional distribution
function of X given the deterministic forecast Y=y
computed as FX|Y(x|y)=Nc(zx; :, F) where Nc is the
conditional density of the normal bivariate which is known
to be normal with mean :=DzY and variance F2= (1-D2).

The third step is to use a distribution mapping
technique to map the two conditional distributions into an
ensemble of maximums and an ensemble of minimums.
The distribution mapping technique works as follows for
maximum temperatures; the maximum temperatures are
ranked and assigned a probability value based upon its
rank, the year is then assigned a new temperature value
by performing the inverse of the normal quantile transform
for that probability level on the conditional distribution
function. 

After these steps are performed to create an
ensemble of maximums and an ensemble of minimums,
the final step is to temporally disaggregate the maximum

and minimum ensembles to produce one ensemble of a
6-hour time series of temperature. The temporal
disaggregation is accomplished with user defined
parameters that drive a diurnal cycle as a function of
maximum and minimum temperature. A graphical user
interface was developed to assist users in determining
these parameters and is shown in Figure 4. At each time
step the user defines the temperature parameter TP and
the 6-hour temperature is calculated as T6= Tmin + TP(Tmax-
Tmin).

Figure 4: Temporal Disaggregation Graphical User
Interface.
 
3.3 Deriving Streamflow Ensembles

Once the temperature and precipitation ensembles
have been created the existing ESP system in NWSRFS
can be used to compute streamflow ensembles. The
resulting streamflow ensembles are conditioned on the
initial conditions of the model and implicitly incorporate
the uncertainty of the deterministic meteorological
forecasts.
 
4. EXPERIENCES

The MARFC has been producing daily short term
probabilistic forecasts for 10 basins on the Juniata River
since June of 2001. Originally, the streamflow forecasts
were computed using this technique for precipitation.
Since July 2002 the short term probabilistic forecasts
account for the meteorological uncertainty of both
precipitation and temperature. Since the temperature
ensembles are only used in the snow models of
NWSRFS, the true value of the temperature ensembles
will be assessed in the coming winter. The daily short-
t e r m  f o r e c a s t s  a r e  a v a i l a b l e  a t
http://www.erh.noaa.gov/er/marfc/AHPS/5-day.htm .

To begin to understand the uncertainty in a
temperature forecast, temperature ensembles were
derived for winter and summer conditions and are shown
in Figures 5 and 6, respectively. The variability of the



ensembles provide information about the confidence of
the forecast, the large variability indicating more
uncertainty in a given forecast. Figures 5 and 6 show that
the uncertainty in the winter temperature forecasts is
larger than the summer temperature forecasts.
Additionally, the winter ensembles show one trace having
an opposite diurnal cycle than all of the other traces even
with the user controlled diurnal cycle. This initially was
cause for concern and a thorough evaluation of the
procedure was performed. The historical data that defines
the joint distribution that approximately 2.5% of the time
the maximum temperature was less than the minimum
temperature. This was done in an effort to simulate
inversions with the fixed diurnal cycle. Since this was a
part of the joint distribution it is actually correct that in
some resulting ensembles the maximum temperature will
be less than the minimum causing a chance of an
inversion occurring with a given forecast of temperature.

Figure 5: Temperature Ensembles for Winter Conditions
at Huntingdon.

Figure 6: Temperature Ensembles for Summer Conditions
at Huntingdon.

5. CONCLUSIONS

In this paper, we described a process that assesses
the uncertainty in short term streamflow forecasts. This
method requires deriving a forecast distribution for a given
deterministic forecast from the joint distribution of
historical forecasts and observations, and  can effectively

capture the uncertainty in the future meteorological inputs
which include precipitation and temperature conditions.

The system has been operational at the MARFC over
ten forecast basins and the process appears to be
working well. Additional testing and vetting of the science
are required before the process is implemented
nationwide.
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