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1.  INTRODUCTION 
  
    Operational weather forecast centers process 
and assimilate very large amounts of 
observation data from satellite and in-situ 
platforms several times each day, in support of 
numerical weather prediction.  
 
    We know, or generally assume, that 
observations add value to a model analysis and 
forecast. This is certainly true in the sense that 
when a large set of observations is assimilated, 
we believe that the analysis and forecast will be 
improved, at least in an average statistical 
sense.  However, it is also true that a non-
negligible percentage of available observations, 
when assimilated, actually degrade the analysis 
and forecast. In fact, this must be expected, 
because data assimilation is a statistical 
procedure based on numerous approximations, 
assumptions, imperfect background fields, and 
imperfect observations. Even observations from 
systems that are considered highly accurate, 
such as radiosondes or dropsondes, may cause 
forecast error to increase when assimilated. It is 
thus of substantial interest to examine and 
understand patterns of observation impact on  
forecast skill.  
 
    The goal of this paper is to describe a new 
adjoint-based procedure for assessing the value 
(in terms of forecast impact) of any or all 
observations used in a data assimilation / 
forecast system.  The procedure can be applied 
as a diagnostic tool to monitor the assimilation 
and quality control of any observation type, and 
can also be used in the design of improved 
observing networks. It can be applied to any 
forecast and data assimilation system for which 
adjoints exists. 
     
2.   OBSERVATION VALUE1 
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    In this study, observation value is assessed 
by using adjoint sensitivity gradients and 
innovations used by NAVDAS to estimate (as 
described in Sections 3-4, below) the effect of 
each observation on a measure of short-range 
forecast error.  If this “observation impact” 
measure is less than zero, a reduction in 
forecast error is implied, and the observation 
value can be considered “beneficial.”  We do 
not, however, attempt to directly assess if the 
observation has improved or degraded the 
analysis from which the forecast is started.  
 
    The observation impact (and hence the 
“value” of the  observation) depends both on 
how the observation is used by the data 
assimilation system to define the initial 
conditions, and also on local rates of error 
growth during the forecast itself. In the 
assimilation, the effect of an observation on the 
initial conditions (the “analysis”) depends on the 
accuracy of the observation, the number and 
configuration of other nearby observations, the 
specified background error, and other features 
of the assimilation technique.  It can be 
assumed that every numerical weather forecast 
starts from initial conditions that contain some 
degree of error.   
 
    During the numerical forecast, any errors 
present in the initial conditions either propagate, 
decay, or grow, at rates that depend on the 
instability of the atmosphere; e.g., the potential 
for error growth. Observations will have the 
largest impact on forecast error when the 
observation influences the initial conditions in a 
dynamically sensitive location. Since error 
growth during the forecast can be very large, it is 
not necessary for the observation to make a 
large change to the initial conditions for it to 
have a large forecast impact.  Forecast error is 
also caused by model deficiencies, which is not 
directly evaluated in this study.  
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3.   OBSERVATION SENSITIVITY 
CALCULATION   

     
    The forecast model used in this study is the 
Navy Operational Global Atmospheric Prediction 
System (NOGAPS, Hogan et al. 1999). It is run 
with a spectral truncation of T79 (~150 km 
horizontal resolution), and 18 vertical levels 
defined in sigma coordinates. The version of 
NOGAPS used here is an operational forecast 
system run at reduced resolution, but fully 
capable of resolving and forecasting synoptic-
scale weather features, when provided with 
accurate initial conditions. The NOGAPS adjoint 
includes a linearization of the dry dynamics, with 
simplified physics including vertical diffusion and 
surface sensible heat and momentum fluxes 
(Rosmond 1997).  The adjoint model uses the 
same horizontal and vertical grid structure as the 
nonlinear forecast model, but moist physical 
processes are not yet included.   
 
    Observations are assimilated in a 6-h update 
cycle with the NRL Atmospheric Variational Data 
Assimilation System (NAVDAS, Daley and 
Barker 2001).  NAVDAS performs a 3d-
variational data assimilation using NOGAPS 
background fields.  All observations available in 
real-time for operational use are assimilated in 
this study, including advanced and experimental 
satellite wind data, surface winds from 
scatterometers, and all  radiosondes, pibals, 
aircraft flight level observations, and surface 
data from ship, land, and buoy stations. Moisture 
is analyzed using a Cressman technique. A 
comprehensive quality control procedure is 
used. 
 
    The calculation of observation sensitivity is a 
two-step process that involves the adjoints of 
NOGAPS and NAVDAS.  We seek the gradient 
(∂J/∂y) of a forecast error costfunction (J) with 
respect to the vector of observations (y).  
 
    We first define a forecast error norm: 
 
      ( ) ( )= a af f f,− −x x C x xe   ,  (1) 
 
where x  is the vector of model predictive 
variables, vorticity, divergence, potential 
temperature, and surface pressure (humidity is 
predicted by the model but not used in the error 
norm calculation).  The subscripts, f and a, refer 
to “forecast” and verifying “analysis”, 

respectively, of the NOGAPS forecast and 
assimilation. In (1) C  is a matrix of energy 
weighting coefficients that represents dry total 
energy (see for example Rabier et al. 1996, or 
Rosmond 1997). An energy metric is used 
because it is the most appropriate choice for 
applications to predictability in the absence of an 
acceptable estimate of the actual analysis error 
covariance metric (Palmer et al. 1998). The 

brackets ,  represent a Euclidean inner 

product  x y,  =  
i i

∑ x y . The error norm in (1) 
has units of J kg-1, and is summed between the 
lowest near-surface model level and a level near 
150 hPa.   The forecast verification area (FVA) 
in which the error is calculated is the global 
domain. 
 
    The costfunction is defined by: 
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2
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and the starting condition for the adjoint 
integration, at forecast verification time, is: 
 
           ( )∂ ∂ = −x C x xf affJ    . (3) 
 
    One integration of the forecast model adjoint  
provides a three-dimensional sensitivity vector 
for the initial conditions (t=0):   
  
              ∂ ∂ = ∂ ∂T

0 ff fJ Jx L x   , (4) 

  
where TL is the operator representing the adjoint 
of the discretized NOGAPS model.  This adjoint 
sensitivity is obtained in a tangent linear and 
perfect model framework, and is linearized with 
respect to a trajectory provided by the nonlinear 
global forecast model (including moist physics), 
that is updated every second time step ( 2∆ t = 
1800 s).  
  
    The second and final step in the sensitivity 
calculations is to operate on the initial condition 
sensitivity gradient using the adjoint of NAVDAS:         
 
 



         ∂ ∂ = ∂ ∂y K xT

0f fJ J   , (5) 
   
where TK is the operator representing the 
adjoint2 of the Kalman gain matrix in the data 
assimilation procedure (Baker and Daley 2000). 
The quantity ∂Jf /∂y is the sensitivity of the 
forecast error costfunction with respect to the 
complete set of observations, y, in observation 
space. If we consider that the background (xb) is 
fixed, then ∂Jf /∂y is also the sensitivity to the 
innovations (observation – background). It 
should be noted that it is necessary to 
interpolate the sensitivity gradient ∂Jf /∂x0, which 
is obtained on the forecast model grid in (4), 
onto the analysis grid before it can be used in 
(5), and care must be taken in this step to 
consider special properties of the sensitivity 
gradient.   
 
 
4.   OBSERVATION IMPACT CALCULATION 
 
    We can now adapt the general procedure 
outlined in Section 3 to address specific 
questions related to observation impact. For 
example, what is the impact of observations 
taken at 00UTC on 72h forecast error3?  
Consider the following analysis and forecast 
configuration, in Fig. 1: 
 
        OBSERVATIONS 
                                                               e78 
           
                                                     e72 
  
 
 
 -6h        00UTC                          +72h 
 
Fig. 1:  Observations are assimilated at 00UTC, 
creating ICs for a new trajectory, which has 
forecast error e72. The old trajectory starts from 
18UTC (-6h), and has forecast error e78. It also 
provides the background for the analysis at 
00UTC.  
 

                                                 
2 The Kalman gain matrix is essentially linear, so the 
adjoint (transpose) calculation for NAVDAS does not 
involve approximation of nonlinear terms.       
3 The choice of 72h is arbitrary, and any forecast 
length may be selected, subject to tangent linear 
limitations of the forecast model adjoint. 

    The difference between the forecast errors 
(e72 - e78) is due solely to the assimilation of 
observations at 00UTC. If there are no 
observations at 00UTC, it is clear that e72 will be 
equal to e78 since the trajectory starting from 
18UTC (-6h) will not be changed when the 
assimilation has no observations to process.     
 
    Using sensitivity gradients from the two 
forecast trajectories, we can estimate the 
forecast error difference, δef = e72 - e78, using 
the following equation:      
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where x0 is the initial condition of the 72h 
forecast trajectory and xb is the background (6h 
forecast) used for the analysis at 00UTC.  
 
    The observation sensitivity in this case is 
defined by: 
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    We may now write an alternative expression 
for δef (derived from (6)) using only quantities in 
observation space, e.g., the innovations and the 
observation sensitivity gradient from (7):  
 

      ( ) 72 / 78
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δ = −
∂
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y

  . (8) 

 
    In (8), the quantity (y – Hxb) is the innovation, 
and H is an operator that performs spatial 
interpolation of the background into observation 
space.  The quantity δef, as defined in (8) 
provides the information we require to assess 
observation impact and value in observation 
space.  
 
    Using (8), the global observation impact can 
be considered as the sum of contributions made 
by all individual observations; currently about 
250,000 observations are assimilated each day 



at the 00UTC analysis time in NAVDAS.  Eq. (8) 
is similar in form to the impact function proposed 
by Dornbecher and Bergot (2001), except that 
here the costfunction is based on actual forecast 
error, instead of a function (such as enstrophy) 
derived from the forecast itself.       
 
5.   PRELIMINARY RESULTS 
 
    It is convenient to group the observation 
impact results by instrument type, such as 
radiosondes, surface data, wind observations 
from geostationary satellites, or commercial 
aircraft observations.  For example, we might 
wish to evaluate the summed impact (Σδef) of all 
geostationary satellite wind observations using 

all observations over the global domain. It is 
possible to also consider any arbitrary subset of 
observation data, such as only observations 
below 600 hPa, or only data from within a 
selected regional area, etc.   

       
    Fig. 2 summarizes observation impact results 
for the 30-day period 29 June – 28 July 2002. 
Note, first, that the cumulative impact for all 
observation types is less than zero, which 
indicates that e72 < e78, due to assimilation of 
the observations.    
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Fig. 2:  Cumulative (summed) observation impact on 72h global forecast error (Σδef) and number of 
observations for the 30-day period 29 June - 28 July 2002, including all observations assimilated at 
00UTC.  Note that every observation data is counted separately; e.g, a sounding from a RAOB contains 
temperature, wind, and height observations on every significant and mandatory level. A (geostationary) 
SATWIND contains both u- and v- wind observations. ATOVS are temperature super-obs. LANDSFC are 
land surface temperature, wind, and height observations. SHIPSFC are ship and buoy surface 
temperature, wind, and height observations. AIRCRAFT are temperature and wind observations from 
commercial aircraft. SSMI are near-surface wind speed, and AUSN are Australian synthetic sea-level 
pressure bogus data.    
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    The ATOVS temperature super-obs provide 
the single largest number of observation data, 
and also produced the largest reduction in 72h 
forecast error of any observation type. The next-
largest reductions in forecast error are provided 
by radiosonde and geostationary satellite wind 
observations, respectively.  A surprising result is 
the significant impact of the Australian synthetic 
surface pressure observations. While only 4,082 
of these data were provided, their impact (-25.5  
J kg-1) is nearly equivalent to that provided by 
satellite wind data (-29.3 J kg-1 with 797,830 
observations). Lesser (but still beneficial) 
impacts are associated with aircraft data, land 
and ship surface observations, and SSMI 
surface wind observations. 
 
    It should be noted that the results 
summarized in Fig. 2 pertain to June and July, 
when the largest forecast errors occur in 
conjunction with baroclinic wave developments 
in the Southern Hemisphere winter. Errors 
during July in the Northern Hemisphere are 
much smaller on average and this seasonal 
variation should be taken into account when 
assessing the relative impact of the various 
observing systems. For example, ATOVS, 
satellite wind data and AUSN are very important 
in the Southern Hemisphere, while most 
radiosonde, aircraft, and land surface data are 
found in the Northern Hemisphere. 
 
 
 
 
 
 
 
 
 
Fig. 3: Observation impact (color-coded 
category ranking based on δef) for the 
assimilation at 00UTC 6 Sep 2002, with forecast 
verification at 00UTC 9 Sep 2002 (+72h).  
Shading in upper two panels indicates 
diagnosed cloud cover > 60 percent. For ATOVS 
(upper panel) each dot represents the combined 
impact of ~30 temperature observations in a 
profile through the entire depth of the 
atmosphere.  
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    On any particular day, there is a wide range of 
observation impact associated with each 
observation type, and the adjoint-based 
procedure allows us to quantify the values for 
every individual observation.  For example, in 
Fig. 3, eight of the AUSN synthetic surface 
pressure observations  have a relatively large 
beneficial impact on 72h forecast error (green 
dots in lower panel); e.g., the error is decreased, 
and four AUSN observations cause a relatively 
large increase in forecast error (red dots).   
 
    In addition, we can determine that the impact 
from single AUSN surface pressure 
observations can be as significant as the impact 
from an entire vertical profile of temperature 
observations provided by ATOVS (upper panel).  
However, the number of ATOVS data over the 
globe is much larger, and so the total impact of 
ATOVS almost always exceeds that from AUSN.   
 
    Based on examination of results like those 
shown in Fig. 3, over several months, it has 
been found that the largest observation impacts 
(positive and negative) tend to occur:  
 
• In the extra-tropical storm tracks of the 

Southern and Northern hemispheres 
• In branches of the sub-tropical jet stream  
• In conjunction with tropical cyclones 
 
    However, even within these regions, large 
observation impact is generally quite localized, 
as suggested by the clusters of color-coded dots 
in Fig. 3.  
 
    Note that the impact calculated for any 
individual observation depends on the 
configuration and types of other observations 
that are assimilated at the same time. Any 
change, such as adding or removing 
observations, is likely to increase or decrease 
the impact of other observations.  
 
    It can also be seen in Fig. 3 that a sizeable 
fraction of observations produce only small 
impact on 72h forecast error, represented by the 
grey dots in Fig. 3. These observations are 
either in regions where forecast error growth is 
relatively small, or they have received little 
weight in the analysis, for various reasons. 
However, the “small impact” observations might 
improve aspects of the analysis or forecast that 
are not measured by the error costfunction used 
here, and so it should not be concluded that the 

observations have no value in a more general 
context.     
   
    Finally, the results indicate there is a very 
strong correlation between observation impact 
and cloud cover.  Observation impact (in terms 
of average magnitude per observation) 
increases dramatically in locations where cloud 
cover is greater than 70 percent (Fig. 4). This 
relationship could exist because cloudy regions 
are more dynamically sensitive, or because 
there are relatively fewer observations in cloudy 
regions and so the available observations 
receive more weight individually in the 
assimilation. The result suggests that targeting 
additional satellite or in-situ observations into 
cloudy regions may be an effective means to 
improve forecast skill.  
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Fig. 4: Observation impact (average magnitude  
per observation, in J kg-1) as a function of 
model-diagnosed cloud-cover.  The “impact” in 
this figure includes both improvements and 
degradations of 72h global forecast error. Based 
on results from 29 June – 28 July 2002. 
 
    
 
 
6.   ACCURACY OF ADJOINT-BASED 

OBSERVATION IMPACT ESTIMATE 
 
    The utility of the results described here 
depends on the accuracy of the forecast error 
estimate δef  provided by (8).  We desire that 
δef   provide a reasonable estimate of the “true” 
value of e72 - e78 obtained from the nonlinear 
model forecasts, although it is not necessary 
that δef   be exact in order for the observation 
impact calculations to provide useful information.  
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Fig. 5: Adjoint-based estimate of δef , and actual 
e72 - e78 . Mean values shown by horizontal lines 
on left axis. Results are shown for 29 June – 28 
July 2002 (missing 2-7 July), and include the 
impact of all observations except humidity.  
 
 
 
    In Fig. 5, we see that from 29 June to 28 July 
2002, the adjoint estimate of δef   always has the 
correct sign (< 0), and follows the day- to-day 
trend of e72 - e78 fairly well through the period, 
except for 22-24 July. On average, the adjoint-
based estimate (δef) is within about 19 percent 
of the actual e72 - e78.  This level of accuracy is 
reasonable, since the adjoint model does not 
account for moist processes, and 72h is a 
relatively long forecast length for adjoint model 
applications.      
 
    There are three principal reasons why the 
adjoint estimate of δef   is not more accurate: 
 
• The NAVDAS adjoint code used in this study 
is not yet totally consistent with the version of 
NAVDAS used in the data assimilation 
procedure (an updated version of the adjoint 
code is currently under development). 
 
• The calculation of ∂Jf /∂x0 (e.g., Eq. 4) using 
the NOGAPS adjoint is subject to inaccuracy 
due to tangent linear limitations and the absence 
of moist processes in the adjoint model. The 
calculations would be more accurate if the 
forecast length was reduced to, say, 24h or 48h 
instead of the 72h forecast length used here.      
 

• Moisture (or humidity) observations are not 
included in the calculation of observation impact 
(Eq. 8). This could be one reason why the 
average error reduction accounted for by δef is 
not as large as the actual e72 - e78 .  That is, 
about 80 percent of the total observation impact 
(on average) is due to temperature, wind and 
height observations, and the remaining 20 
percent would be the impact of humidity 
observations.  
 
 
7.   DISCUSSION 
 
    This paper describes the mathematical 
framework for observation impact assessment 
using a new adjoint-based procedure. It requires 
adjoint versions of the forecast model and the 
data assimilation code. The computational cost 
of the sensitivity and observation impact 
calculations is roughly the same as a single run 
of the regular forecast model and the data 
assimilation.  Accuracy of the calculations is 
relatively good, even when applied to forecasts 
as long as 72h. A significant benefit of the 
procedure is that observation impact can be 
estimated and assessed for any individual 
observation or subset of observation data.     
 
   Preliminary results illustrate characteristics 
and patterns of observation impact on 72h 
global forecast error. The total (global) 
observation impact is the sum of a wide range of 
impact associated with individual observations. 
Although the total (sum of all observations) 
impact is beneficial, a substantial fraction of 
observations increase the forecast error when 
assimilated. This is a general result that 
demonstrates the statistical manner in which 
data assimilation procedures attempt to extract 
value from observation data.  
 
    The impact of individual observations, at any 
given time and location, depends strongly on the 
particular assimilation system and forecast 
model being used.  A selected observation used 
in one assimilation system may have a 
beneficial impact, but the same observation may 
not be beneficial when assimilated in another 
system that uses, for example, different error 
covariance statistics, a different background, 
etc.  
 
    The observation impact procedure can be 
used to identify systematic problems that might 

δef    
e72 - e78 



exist with certain types of observations or for 
observations in certain locations.  For example, 
a problem with assimilation of ATOVS 
temperature retrievals in the lower troposphere 
was corrected in NAVDAS after examining 
vertical profiles of observation impact over a 
period of several weeks.  Future work will apply 
the observation impact procedure as a 
diagnostic tool to monitor the data assimilation 
process, and in research for the design of 
improved observing networks in conjunction with 
the THORpex program (see web site below).    
     
 
WEB SITE: 
 
Observation sensitivity products produced in 
near real-time using NAVDAS and NOGAPS 
can be viewed at: 
http://www.nrlmry.navy.mil/shared-
bin/adap/adap.cgi 
  
 
THORpex: 
 
A ten-year international program of research and 
field work being developed to examine 
observing system and predictability issues in a 
global context: 
THORpex Presentation 
 
 
ACRONYMS: 
 
NAVDAS – NRL Atmospheric Variational Data 
Assimilation System   
 
NOGAPS – Navy Operational Global 
Atmospheric Prediction System 
 
THORpex – THe Observing System Research 
and Predictability Experiment 
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