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1. INTRODUCTION 
2. ALGORITHM DESCRIPTION 

Knowledge of the horizontal and vertical distribution 
of water vapor on the global scale is required for 
applications ranging from numerical weather forecasting 
to climate modeling and climate change studies.  
Because of their global clear and cloudy sky water vapor 
measurement ability, passive microwave satellite 
sensors, such as the Advanced Microwave Sounding 
Unit (AMSU), are a primary source of data for fulfilling 
this requirement.  Due to the complex nature of the 
atmosphere and the increasing volume of data in the 
Earth Observing System (EOS) era, sophisticated and 
efficient and methods are needed to extract water vapor 
fields from these data.  An optimal-estimation algorithm 
has therefore been developed for the retrieval of water 
vapor profiles from passive microwave observations. 

The retrieval algorithm is a physically based iterative 
optimal-estimation scheme (OE algorithm) adapted from 
the method of Engelen and Stephens (1999).  The 
algorithm can take data from AMSU-B, from AMSU-B 
and AMSU-A combined, from SSM/T-2, or from the 
upcoming SSMIS instrument.  A variety of parameters 
can be retrieved including profiles of water vapor mixing 
ratio, joint water vapor and temperature profiles 
(including surface temperature), and water vapor and 
temperature profiles along with microwave surface 
emissivities. 

The retrieval scheme requires a first guess of the 
water vapor and temperature profiles as well surface 
emissivities at the relevant microwave frequencies.  This 
first guess comes from climatology.  An a priori 
distribution of the retrieval parameters is used to 
constrain a non-linear iterative optimal-estimation 
scheme which uses the method of Rogers (1976) to 
minimize the cost function Φ  to find the optimal solution 
x, where: 

The algorithm described herein uses the method of 
Rodgers (1976) to simultaneously retrieve profiles of 
temperature and water vapor as well as cloud water path 
and surface emissivity.  Because of the highly coupled 
nature of the atmosphere and the sensitivity of 
microwave measurements to each of these parameters, 
more accurate retrievals of each can be achieved 
through a simultaneous retrieval.  Furthermore, the 
retrieval method is quite general, making it flexible in 
terms of data used and parameters retrieved.  New data 
sources and retrieval parameters can be added easily, 
and in a more physical manner given the simultaneous 
retrieval ability, relative to statistical regression real-time 
algorithms. 
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where x is the vector of parameters to be retrieved, xa is 
the a priori vector, y is the set of observations, F(x) is a 
forward radiative transfer model used to compute 
radiances given x, and Sa and Sy are the error 
covariance matrixes of the a priori data and the 
observations, respectively.  The vector of retrieval 
parameters may include the profile of water vapor mixing 
ratio alone, or may include the temperature profile and 
surface emissivities as well.  The a priori error 
covariance matrix includes the variances of and 
correlations between the retrieval parameters, thus 
providing a constraint on the solution from a priori 
knowledge.  The error covariance matrix of the 
observations includes forward model errors and 
uncertainty in the observed radiances. 

The algorithm has been tested using simulated data 
(McKague et al. 2001).  In this paper, the algorithm is 
demonstrated using data from AMSU with comparisons 
to an independent retrieval of total precipitable water.  
The algorithm is shown to be accurate while also being 
efficient enough to be run in real-time. 

 



  

For the forward radiative transfer, monochromatic 
microwave brightness temperatures are computed using 
numerical integration of the radiative transfer equation 
for a plane parallel, absorbing atmosphere together with 
Liebe’s MPM92 (Liebe and Hufford 1993) model of 
microwave atmospheric attenuation.  Only liquid clouds 
are included.  An analytic Jacobian has been developed 
for the radiative transfer model.  The ocean surface 
model of Yueh (1997) is used to compute microwave 
emissivities at the appropriate frequencies. 

 
 
 
 
 
 
 
 
 
 
 
 3. NEAR REAL-TIME PROCESSING 

 Channel Frequency (GHz) NEDT 
(K) 

1 23.8 0.3 
2 31.4 0.3 
3 50.3 0.4 
4 52.8 0.25 
5 53.596 . 115 ± 0.25 
6 54.4 0.25 
7 54.94 0.25 
8 55.5 0.25 
9 57.290344 = f0 0.25 
10 f0 ± . 217 0.4 
11 f0 ± . 3222 .048 ± 0.4 
12 F0 . 3222 . 

022 
± ± 0.6 

13 f0 ± . 3222 . 010 ± 0.8 
14 F0 ± . 3222 . 

0045 
± 1.2 

AMSU-A 

15 89.0 0.5 
1 89.0 2.0 
2 150.0 2.0 
3 183.31 ± 1.0 2.0 
4 183.31 ± 3.0 2.0 

AMSU-B 

5 183.31 ± 7.0 2.0 

Near real-time processing of AMSU data through 
the OE algorithm has been producing profiles of water 
vapor and temperature as well as cloud water path and 
surface emissivity estimates for the NOAA-15 and 
NOAA-16 satellites since August of 2002.  Retrievals are 
produced only in non-precipitating areas over open 
ocean.  The Microwave Surface and Precipitation 
Products System (MSPPS) precipitation screen was 
used to eliminate precipitating pixels.  The mean fields 
for the combined NOAA-88 and TIGR datasets of 
temperature and water vapor mixing ratio have been 
used for the first guess.  For the first guess surface 
emissivity, the temperature of the lowest level was input 
to the model of Yueh (1997).  The MSPPS algorithm was 
used as the first guess for cloud water path. 

The a priori error covariance matrix Sa was 
computed using the combined NOAA-88 and TIGR 
profile datasets.  The error covariance matrix for the 
observations, Sy, was computed using the AMSU 
characteristics in Table 1.  The AMSU channels were 
assumed to be uncorrelated.  Forward model error was 
not included in Sy.  AMSU-B observations are averaged 
to the scale of the AMSU-A before being input to the 
retrieval algorithm. 

The processing is done on four 1.6 GHz Pentium IV 
equipped PCs.  One day of AMSU data (14 orbits) can 
be processed in approximately 4.25 hours for full water 
vapor profile, temperature profile, cloud water path, and 
surface emissivity retrievals.  This level of processing 
efficiency is largely due to the use of an analytic 
Jacobian in the OE algorithm; if a numerical Jacobian 
were used, processing requirements would increase by 
about a factor of 15. 

 
Table 1.  AMSU characteristics used in retrievals. 
 
 
 
 
 
 Figures 1 through 5 show example output from the 

algorithm.  Figure 6 shows a comparison of total 
precipitable water retrievals, computed by integrating the 
water vapor profile and adding cloud water path, with 
MSPPS total precipitable water retrieved from AMSU-A.  
The two retrievals match well, with a correlation of 99%. 

 
 
 
 
 
  
  
  
  
  
  
  
  

 
 

 
 



  

  
Figure 1.  Global distribution of total precipitable water 
from the NOAA-16 AMSU on September 20, 2002 using 
the OE algorithm. 

Figure 4.  Global distribution of 500 mb water vapor 
mixing ratio from the NOAA-16 AMSU on September 20, 
2002 using the OE algorithm. 

  

  
Figure 2.  Global distribution of 1000 mb water vapor 
mixing ratio from the NOAA-16 AMSU on September 20, 
2002 using the OE algorithm. 

Figure 5.  Global distribution of liquid cloud water path 
from the NOAA-16 AMSU on September 20, 2002 using 
the OE algorithm. 

  

 

 
Figure 6.  Comparison of OE algorithm derived total 
precipitable water and MSPPS AMSU-A retrieved total 
precipitable water for September 20, 2002.  Correlation 
between the two is 99%. 

Figure 3.  Global distribution of 850 mb water vapor 
mixing ratio from the NOAA-16 AMSU on September 20, 
2002 using the OE algorithm.  
. 

 
 



  

 
 

4. CONCLUSIONS AND FUTURE WORK 

An algorithm for the retrieval of water vapor profiles 
from passive microwave satellite observations has been 
presented.  The algorithm is quite general, in that it can 
be applied to data from AMSU as well as other satellite 
platforms such as SSM/T-2 and the upcoming SSM/IS 
instrument.  Water vapor profiles can be retrieved with or 
without profiles of temperature profiles, cloud water path, 
and surface emissivities.  The algorithm is efficient 
enough to process data in real-time and compares well 
with an independent total precipitable water algorithm. 

A number of upgrades will be made to the algorithm 
in the future.  These include: 
• Averaging AMSU-B observations to the AMSU-A 

using Backus-Gilbert processing (Jones et al. 2003) 
• Integration of the algorithm into CIRA’s DPEAS 

processing environment (Jones and Vonder Haar 
2002) 

• Including the effects of scattering in the radiative 
transfer model and associated Jacobian 

• Including the ice clouds in the retrieval 
• Assessing retrieval performance in light precipitation 
• Producing covariance matrixes of land surface 

emissivities for the retrieval of profiles over land 
• Comparison of retrieved profiles with rawinsonde 

data 
• Additional sources of data will be added starting 

with the AMSU on board NOAA-17 and SSMIS 
• IR data will also be added for improved cloud 

retrievals 
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