
2.3 ORPG REVIEW: CLUSTERING, DATABASE AND SYSTEM MANAGEMENT

by Zhongqi Jing1*, Steve Smith2 and Michael Jain3

1Cooperative Institute for Mesoscale Meteorological Studies,
University of Oklahoma, Norman, Oklahoma

2NOAA/NWS/WSR-88D Radar Operational Center

3NOAA/ERL/National Severe Storms Laboratory

1. INTRODUCTION

Several ORPG (the Open systems Radar Product
Generator) design concepts have been discussed in our previous
IIPS conference presentations (Jain et al., 1977, Jing et al.,
1997, Jing et al., 1998, Jing et al., 2000). In this paper we will
present several others, namely the clustering technology, the
embedded data query support and the ORPG management and
monitoring.

Clustering is a widely used architecture to implement
scalable, highly-available systems. The ORPG clustering
technology is based on a loosely-coupled multi-tasking software
architecture. It allows the ORPG system to run on multiple
nodes (UNIX hosts, e.g. workstations and PCs) and thus, makes
ORPG scalable. When the processing resource requirement
increases beyond the current RPG hardware limitation, new
hardware such as PCs can be incrementally added to the system
to scale up the processing capability.

ORPG has a built-in highly efficient and light-weight data
query system for managing products and product users. The
technology, an embedded simple database system, will be
discussed and compared with other database systems.

The ORPG is a loosely-coupled multi-tasking system. It
consists of nearly one hundred processes and as many data
stores which are being updated dynamically for publishing and
exchanging data. We will discuss system management issues
such as system start-up and shutdown, process monitoring and
system status tracking.

Understanding the technology and design concepts of the
ORPG system should be beneficial for its users, developers and
maintainers. The ORPG technology and the software could
potentially be reused by other similar systems if awareness of its
capabilities are increased.

* Also affiliated with NOAA/OAR/National Severe Storms
Laboratory. Corresponding Author address: Zhongqi Jing,
NSSL, 1313 Halley Circle, Norman, OK 73069; e-mail:
jing@nssl.noaa.gov.

2. CLUSTERING

One of the ORPG design goals is to support increasingly
more data processing applications. As new algorithms and new
products are introduced to the system, the demand on the system
resources (CPU, memory, disk storage, network bandwidth and
so on) will increase. Clustering is a widely used architecture to
implement scalable, highly-reliable systems. It allows
incremental addition of new hardware to provide required
resources. The ORPG supports network based clustering, in
which multiple, general purpose UNIX workstations and/or
LINUX PCs (called nodes) are connected through a TCP/IP
network. No special clustering hardware is necessary. The
ORPG software then runs on all available nodes simultaneously.
The ORPG clustering feature is sometimes called distributed
processing.

Clustering makes ORPG scalable. When the processing
resource requirement increases beyond the current RPG
hardware limitation, new hardware such as PCs can be
incrementally added to the system to scale up the processing
capability. Compared to replacing the entire RPG hardware,
this will reduce hardware upgrade risk and allow RPG
processing power to be scalable virtually without limitation.

RPG performance and availability can be increased through
clustering. Should a workstation fail, it is possible to run RPG
(perhaps in a degraded mode if the resources are not sufficient)
without the failed hardware. Clustering also provides the
potential for dynamic load balancing, which can further improve
RPG performance and availability. Dynamic load balancing is
currently not implemented.

The ORPG clustering technology is based on the ORPG
loosely-coupled, distributed, multi-tasking architecture (Jing et
al., 2000 and Jain et al., 1997) which features the following
concepts:

1. ORPG software consists of a number of tasks
(applications). New tasks (e.g. tasks for implementing new
algorithms, generating new products and providing new
infrastructure services), can be added.

2. ORPG tasks communicate with each other through data
stores. Although other inter-process communication (IPC)
mechanisms, such as remote procedure call (RPC) and

client-server model, are supported in ORPG, communicating
through data stores is the primary means of IPC. This makes the
RPG a loosely coupled multi-tasking system.

3. ORPG tasks are built on top of the ORPG infrastructure
libraries, which make the clustering possible. The ORPG
infrastructure software provides support for reliable data access
regardless of the physical location of the data store and the node
characteristic (e.g. data byte order). In addition to data store
access, the ORPG infrastructure software allows the
applications to call any function and execute any command on
remote nodes.

The ORPG clustering support is mostly transparent to the
application developer and the system user. The following are
some of the design decisions.

1. ORPG applications will be able to run in the distributed
environment without any special coding. That is, any
application developed on a single-node environment will be
ready for running in a multi-node configuration.

2. All nodes are identically installed. i.e. All hosts are
loaded with the same libraries, executables and ORPG
configuration files. There is no master node designation.

3. A system configuration file is generated and distributed
to all nodes when ORPG is started. This file contains
information about locations of all ORPG public data stores. The
infrastructure software uses this file to access the appropriate
data stores which contain all ORPG internal data and
meteorological data. The system configuration file can be
updated while the ORPG is running. This will be useful for
dynamic load balancing.

4. Each application creates and writes its log file on its local
node. The tool that reads and prints the log messages (called
“lem”) is able to run on any node and transparently access the
log file of any task(s).

5. The status of all operational processes (tasks) is
monitored regardless of their location. The tool that prints the
process status (called “rpg_ps”) can be invoked on any of the
nodes.

6. The human computer interface (“hci”) can run on any of
the nodes.

7. Command line ORPG control commands, such as startup,
shutdown and others, can be issued on any of the nodes.

The ORPG uses a configuration file for specifying how to
distribute its data stores and operational processes among
available nodes. If this file does not exist, ORPG will run on the
local node assuming a single node configuration. Multiple
configurations may be prepared for load balancing and dealing
with hardware failure. Each file can contain multiple

configurations.

Listed in the following is a simple example resource
configuration file for illustrating how to use the ORPG
clustering feature.

 node_names {
rpg apple
pc pear

 }
 all_nodes {

rpg ras_sharedBasedata ras_default
pc ras_baseProducts ras_sharedBasedata
replicate 55 rpg pc

 }
 single_node {

rpg
 }
 ras_baseProducts {

product 2 3 4 5 6 7
task basrflct
product 11 12 13 14 15 16
task basvlcty

 }
 ras_sharedBasedata {

product 55 # BASEDATA
 }

In this particular cluster configuration file, we have two
nodes. We assign a name to each of the nodes. In this case, the
node names are "rpg" and "pc". Node "rpg" is a SUN
workstation which, for example, could be the RPG host in the
current WSR88D operational system. Node "pc" is a PC running
LINUX which could be an additional processor to the
operational system. In the first section (with key word
"node_names"), we specify the host name (or IP address) for
each node. In this case, the host names are "apple" and "pear"
respectively.

We define two clustering configurations in this file. They
are named with "all_nodes" and "single_node". Configuration
"all_nodes" uses all nodes (two in this case) and "single_node"
uses only node "rpg".

In configuration "all_nodes", we assign resource sections
"ras_sharedBasedata" and "ras_default" to node "rpg" as seen in
the file. Similarly, we assign resource sections
"ras_baseProducts" and "ras_sharedBasedata" to node "pc".
Each named resource section, which must be defined in the file,
specifies a set of processes and data stores. Resource section
named "ras_default" does not need to be defined. It represents
all data stores and tasks that are not explicitly allocated to any
node. We can see, in this example, we allocate the two tasks,
"basrflct" and "basvlcty", to node "pc". Data stores, "2" through
"7" and "11" through "16", are allocated on node "pc". These are
the radar base products. All other tasks and data stores are

allocated on "rpg".

Thus, in this configuration, the base products are generated
on node "pc". In order to generate the base products, task
"basrflct" and "basvlcty" will need the base data which, in this
example, are accessed from data store "55". If we only allocate
"55" on "rpg", both tasks will have to access "55" individually
(across the network in this case). To reduce network traffic, we
duplicate data store "55" on both nodes and invoke the data
replication service (line "replicate 55 rpg pc" in the file). This
allows all of the tasks running on the PC to locally access the
radar base data.

In the "single_node" configuration, we do not need to
specify any details because everything will be on the default
nodes which is the first node if not otherwise specified.

3. DATA QUERY

ORPG has a built-in, highly efficient and light-weight data
query system for managing products and product users. The
technology, an embedded, simple database system, adds content
based data search support to the ORPG.

Almost all data in the ORPG, including base radar data,
products, intermediate products, communication messages,
adaptation data, configuration data, status and state data and so
on, are stored in data store objects called Linear Buffers (LB)
(Jing et al., 2000). A Linear Buffer is a managed file or shared
memory segment that can store multiple messages. Data stored
in an LB are accessed through the LB library routines. The LB
library provides support for data persistence and integrity, event
notification, remote access and concurrence access control. Data
(messages) in an LB are organized as either a message queue or
a message pool. Messages can be accessed sequentially or
randomly with message IDs. Although the LB supports certain
data base features, by itself, it does not support content based
access such as data query.

The ORPG data query technology adds data query support
for messages stored in LBs. The client-server architecture is
used here. A server is implemented to provide the query service.
The server retrieves and maintains information that is required
for query service from all messages of the LB supported by the
server. It updates the message information when any message
in the LB is updated, deleted or inserted. When any application
in the ORPG needs to query the LB, it sends a request (through
an SQL-like API described later) to the server. The server
performs the search and returns the result to the client. The
client application can be on any host on the network.

The client server model eliminates the need for each
individual application to maintain a copy of the message
information and follow message updates in the LB. Each
instance of the server provides query support for a set of any
number of specified LBs. Multiple instances of the server can be
started for different sets of LBs. The LBs supported by the

server can be on different hosts.

The server maintains the message records in a table linked
to “Red-Black” (balanced binary) trees called index trees. The
index trees allow efficient (logarithmic complexity) record
insertion, deletion and search. The efficiency is important in
real-time data processing systems with large amount data to
manage. The ORPG data query technology supports
heteorogeneous environment (e.g. one consists of both PCs and
SUN workstations).

The ORPG data query technology uses a simple API
resembling the SQL's "where" statement. For example, the
following function call,

SDQ_select ("product.lb", "vol_num = 34 and prod_id =
19", &result); searches for all products of product ID "19" and
volume number "34" stored in the product LB named
"product.lb".

The second argument in calling SDQ_select is the "where"
statement similar to that used in the SQL query of a typical
relational data base. For example, the following "where" are
acceptable: "vol_num < 13 and vol_num > 10 and (prod_id = 19
or prod_id = 20) and not elevation > 5".

In the current ORPG, products and product users are
accessed through the query interface. The data query feature can
be used in the future in other areas such as adaptation data and
algorithm development.

An illustrative example is querying an adaptation data LB:

 SDQ_select ("RPG_adapt", "radar_name = KOUN and
data_name = 'radar location'", &result);

This call could return a structure containing the latitude,
longitude and altitude of radar "KOUN".

Algorithms could use the data query service for managing
their internal data. Using the service could simplify the work of
writing data management code.

The ORPG data query software implements only a small
subset of the functionality of a typical database system. It does
not support advanced features such as complex joint query and
batch jobs, advanced report generation, GUI development
support and others. If one needs those features, one should
consider a commercial or GNU data base.

The ORPG data query provides the key functionality of
querying a large collection of entries. It offers the applications
the convenience and reliability that commercial data base
systems provide. It is, however, much lighter than a full-blown
data base system. It does not have the licensing and upgrade
cost associate with a commercial data base system. It does not
require the level of maintenance, training and administration of

full featured data base systems.

The ORPG data query is much more efficient than a typical
data base system because query records are all stored in
memory and efficient index trees are built for the records. It
eliminates overhead processing needed by full featured data
base system. For example, the ORPG data query can manage
real time radar radial data without consuming substantial system
resource.

4. SYSTEM MANAGEMENT

The ORPG is a loosely-coupled multi-tasking system. It
consists of nearly one hundred processes and as many data
stores which are being updated dynamically for publishing and
exchanging data. We discuss here system management issues
such as system start-up and shutdown, process monitoring and
system status tracking.

In the ORPG, each task is designed, developed and tested
separately. The interaction with other tasks are minimized and
well-defined. The interaction is performed in a loosely coupled
way: Each task reads its inputs from and writes its outputs to
well-known data stores without making connections (such as
pipes or sockets) to other applications. The loosely coupled
architecture promotes isolation between tasks and thus offers
several advantages. As long as a task's inputs and outputs are
designed, it can be developed independently of other tasks. It
can be tested with a test data feed even if the task that is
supposed to provide the input is not available. When a new task
needs to be added later, existing tasks do not need to be changed
to provide data to the new task through new connections. Well-
isolated tasks can be more reusable because it has less
dependencies on other tasks. Loosely coupled tasks can be
restarted without disturbing tasks that interact with it. This
increases system robustness. Locating software defects becomes
easier because each system function is often involved in only
one task and its input and output can be easily tracked. In a
tightly coupled system, such as one using remote procedure
calls, a task will not run without other tasks that implement the
remote functions. It would be more difficult to determine the
problem area when errors occur. Problem analysis is also made
difficult because data flowing through pipes, sockets and RPC
protocol are hard to track and examine.

The nice features of a loosely coupled system come with a
cost. Using files for inter-process communication is an old
technology. Indirect communication can be inefficient and
tedious to program. The solution to this is using LBs instead of
plain files. The LB technology extends the file based
communication idea in several ways and makes it possible to
use it as a primary IPC mechanism in a complex system such as
ORPG: It simplifies the programming API. It extends it to be
applicable for high data rate flow (such as multiple streams of
radar base data). It supports remote access in a cluster
environment.

Another issue with the loosely coupled system is that we
have to manage the processes and the data stores. Data stores
have to be created and cleaned up. Processes have to be started,
monitored and shut down. Manually starting one hundred
processes can be a difficult job. Many systems use so called
"glue" script, such as Perl or Python, to do this job. In ORPG,
we use tasks written in C to perform the job. The decision is
made because of the following: Most of the ORPG tasks are
written in C. The benefit of adding another language to the
system may not justify the cost. Management tasks written in C
are more efficient and are able to take full advantage of the
infrastructure software support. They have the same look and
feel like other ORPG tasks. And, finally, those "glue" scripting
tools do not provide strong support for task management and
monitoring in the ORPG cluster (multiple node) environment.

The tasks for ORPG management are the following.

1. "Manage RPG" (mrpg). This is the main task that sets up
the ORPG run-time environment (creating and initializing data
stores, generating and distributing the system configuration file
and so on), starts (shuts down) operational tasks, monitors
operational processes and maintains ORPG states. There is only
one instance of mrpg running. In the ORPG loosely coupled
system, mrpg is just one of the operational tasks. It is not a
master process. It can be terminated and restarted while ORPG
is operating. No other task is affected if mrpg is stopped except
the service provided by mrpg becomes unavailable.

2. "Node Data Service" (nds). This is a process that collects
the status of the ORPG operational tasks. The status is collected
in near real-time (thus must be implemented efficiently) and
reported to mrpg. An instance of nds runs on each node. mrpg
starts nds as needed.

3. "RPG Process Status" (rpg_ps). This is a tool for
displaying process status of all ORPG operational processes.

4. "Operate RPG" (operate_rpg). This is a task that helps to
start the RPG automatically after the operating system boots up.
It also helps to implement certain operational security features.

mrpg performs the procedures of starting up and shutting
down the ORPG system. The following steps are performed to
start the RPG.

1. Reads RPG configuration information from various
configuration files such as the task table, product table, data
table, comms configuration and resource allocation table.

2. Generates the ORPG system configuration file and
distributes it to all nodes. This file contains the physical
locations of all public data stores.

3. Creates all public product and data stores. If a data store
exists and does not need to be recreated, its attributes are
verified.

4. Executes a list of commands defined in a configuration
file to initialize the data stores. Many adaptation and status data
stores need to be initialized. The initialization commands are
invoked in defined sequence and one after another. If a critical
command fails, the startup procedure fails and the error is
reported.

5. Starts all ORPG operational tasks (processes). All
operational processes run concurrently as background processes.
There is no defined start up order. mrpg can choose to start
them in any order. If a process cannot be started because, for
example, the executable file does not exist, the startup
procedure fails and the error is reported.

mrpg creates data stores and starts processes on the correct
node according to the resource allocation configuration.

mrpg accepts and processes other commands such as
shutting down ORPG, putting ORPG in stand-by mode, turning
ORPG into test mode and so on. One can issue a command by
directly running mrpg. e.g. “mrpg startup”. One can also send
a command to the mrpg command queue. All commands in the
queue are processed sequentially.

mrpg monitors all operational processes. Any failed process
is reported immediately. mrpg can restart any failed or killed
process if it is specified to do so. Any duplicated process is
detected and killed. Memory and CPU utilization of processes
are monitored. If a process is detected to consume excessive
memory or CPU resource, it is killed.

Operational processes running in ORPG do not need to
report to mrpg. Nor do they need to be implemented to call
specific ORPG functions in order to be incorporated into ORPG.
That is, a third party application not developed for the ORPG
can be used as an operational process. Such a process, of course,
will not take advantage of the ORPG infrastructure support.
Operational processes do not need to be started from mrpg. The
developer or operator can start, or terminate, any of them
manually through command line. Any ORPG application, e.g.
hci, can start a process too.

5. ACKNOWLEDGMENTS

ORPG developers, Hoyt Burchan, Eddie Forren, Gary
Gookin, Aamir Nawaz, David Priegnitz, Dan Suppes, and John
Thompson made numerous contributions to the ORPG software
design.

6. REFERENCES

Jain, M., Jing, Z., Zahrai, A., Dodson A., Burchan H., Priegnitz
D. and Smith S., 1997: Software Architecture of the Nexrad
Open Systems Radar Product Generator (RPG). Preprints for
13th International Conference on IIPS, Long Beach, Ca,
February 1997, pp 238-241.

Jing, Z., Smith S., Jain, M. and Zahrai, A.: Migration of Legacy
WSR-88D Algorithms and Product Generators to the Open
Systems RPG. Preprints for 13th International Conference on
IIPS, Long Beach, Ca, February 1997, pp 245-248.

Jing, Z., Jain, M., and Burchan, H.: "User Profile Based Product
Distribution in the WSR-88D Open Systems Radar Product
Generator (ORPG). Preprints for 14th International Conference
on IIPS, Phoenix, Arizona, January 11-16, 1998. pp 238-241.

Jing, Z. and Jain, M.: The Linear Buffer and Its Role in the
WSR-88D Open System RPG. Preprints for 15th International
Conference on IIPS, Long Beach, Ca, January 11-16, 2000, pp
395-398.

