
13.4 DESIGN ASPECTS OF THE COMET MULTIMEDIA DATABASE

Stephen A. Drake *
UCAR/COMET, Boulder, CO

Eileen Kuo

UCAR/COMET, Boulder, CO

1. INTRODUCTION

The COMET Multimedia Database (CMDB) utilizes
a Model/View/Controller (MVC) architecture. MVC
design is widely recognized in the software development
community as a preferred way to loosely couple basic
application components. Depending on available
resources and projects goals, employed software
technologies will vary in how they implement an MVC
design. For this project, we utilize a relational database
to contain model data and Java Server Pages (JSPs) to
define the view. For the controller, we utilize the Jakarta
Struts framework, extending Struts action classes to
further enhance application behavior. In this paper, we
delineate the CMDB software design and examine utility
the Struts controller in this context.

2. APPLICATION DESIGN

 To facilitate both ease of use and the capability to
specify a complex query, we created three different
web-based interfaces that a user can manipulate. The
"SimpleQuery" interface contains a text field in which a
user can enter an alphanumeric string. With an
"AdvancedQuery" the user can search for two different
strings and apply logical operators that define a
relationship between them. The user can also configure
the resultant display to some degree in the
AdvancedQuery. With the third query type, a
"BrowseQuery" a user can apply operators relevant for
the data type that will be searched in the database.
Although we designed a different user interface for each
of these query types, they all utilize synonymous round-
trip processes to generate a response on the user's
browser.

2.1 THE CONTROLLER

The controller is a set of Java classes housed on
the web server that act like a switchboard to direct the
flow of an incoming request. Figure 1 is a snippet from
the CMDB Struts controller configuration file, "struts-
config.xml", that defines an action element. It associates
a destination class as given by the "type" attribute with a
URL as given by the "path" attribute. So, when the user

*Corresponding author address:
Stephen A. Drake UCAR/COMET, P.O. Box 3000,
Boulder, CO 80307, email: drake@comet.ucar.edu

submits a form to the "simpleQuery" URL, the Struts
controller forwards this request to the
SimpleQueryAction class. This action element also
defines the name of a FormBean, called
"simpleQueryForm", which is a Struts-specific JavaBean
(also called a bean). This FormBean contains the
information typed in by the user. The "scope" attribute
defines the longevity of the FormBean and the "validate"
attribute indicates whether or not the input bean should
be checked for valid values. The "forward" elements
define which views to direct invalid or valid responses.

<!-- Simple Query -->
<action path="/simpleQuery"
type="edu.ucar.comet.struts.SimpleQueryAction"
 name="simpleQueryForm"
 scope="request"
 validate="true"
 input="/simpleQuery.jsp">
 <forward name="failure"
path="/simpleQuery.jsp"/>
 <forward name="success"
path="/simpleQuery.jsp"/>
</action>

Figure 1. Code snippet from a "struts-config.xml" file.

 The diagram in Figure 2 shows an overview of the
round trip activity that occurs when a user activates an
HTML form submission. When this occurs, the user's
browser sends an HTTP request to the web server
hosting the application. The web server directs this
request to a servlet engine which, in turn, forwards it to
the Struts controller. The controller parses the request
and populates a JavaBean associated with the
submitted form, in this case a SimpleQueryForm bean.
Since the "scope" attribute in "struts-config.xml" is set to
"request", the SimpleQueryForm bean is placed into
"request" scope. If the "validate" attribute in "struts-
config.xml" is set to "true" (as in Figure 1), the controller
then invokes the validate() method in the
SimpleQueryForm bean that checks the form values. If
the submitted information is not valid, the Struts
controller generates a response containing an error
message and directs this response to the "failure" JSP
defined as in "struts-config.xml". A message resource
file called "ApplicationResources.properties" defines this
error message, as well as other text contained in the
HTML form. (You can write a different message
resource file for each language that you want to
support.)

mailto:drake@comet.ucar.edu

Figure 2. Request/Response overview.

If, on the other hand, the user entered valid
information into the HTML form, processing continues
with a class associated with the query type. As indicated
in Figure 1, the Struts controller passes the request to
the action "type" which in this case is the
"edu.ucar.comet.struts.SimpleQueryAction" class. The
SimpleQueryAction class merges information stored in
the SimpleQueryForm with a QueryObject built from
information in the file "database.xml" to create an SQL
query. If the result of this SQL query is not valid, the
application forms an error message and forwards a
response to the "failure" JSP. Otherwise, the result set
is repackaged into a result set bean and forwarded to
the JSP defined by the "success" attribute as in Figure
1.

2.2 THE VIEW

JSPs maintain information relevant to displaying
information that the user enters as well as the response
from a given form submission. To do this, each JSP
keeps a copy of the JavaBean containing the user
submission, a locale object to keep track of the
preferred language, and a result set bean that contains
the database values from a successful query.

For example, the "simpleQuery.jsp" file contains

commonly used HTML tags as well as JSP constructs to
store and display information. It also contains Struts
HTML tags that provide additional behavior and obviate
the need to embed Java scriptlet code. The
<bean:message> tag indicates where in the response to
embed a piece of text defined in the application
resource file mentioned earlier called
"ApplicationResources.properties". By using this tag,
you can avoid embedding any language specific text
and thus create a JSP that supports more than one
language.

We utilized many other tags in the JSPs composed
for this application and a full description would be overly
exhaustive. Suffice it to say that these tags add
capability to standard HTML but in a tag format that is
consistent with HTML.

2.3 THE MODEL

In MVC architecture, the term "model" is often used
interchangeably with the word "data". In this application,
we have several data sources - the backend database,
the configuration information required to initialize the
application, and the information the user entered.

The backend relational database is opaque to both

the user and software developer. When the user
submits a query, the database creates a result set which
is then packaged into a result set bean and returned to
the JSP. All that the JSP developer needs to know is the
name of the database attributes that may be contained
in the result set bean. This information is fully defined by
the database schema. The information required to form
an SQL query for each query type is defined in a file
called "database.xml". This file defines a syntax for
forming SQL queries that permits variable SQL
constructs utilized in different database
implementations. For example, one can see from the
"database.xml" code snippet for a "BrowseQuery" in
Figure 3 that an sqlClause element contains attributes
that define operator names used in an SQL query. Since
these attribute values are defined in an editable
configuration file, this syntax allows the CMDB to be
utilized with a variety of backend databases.

<select name="sqlSelect"
 queryType="browseQuery"
 command="select"
 defaultAttribute="*">
 <sqlClause searchAttribute="media_id"
 attributeType="integer"
 attributeValue="1"
 attributeOperator="="
 operatorType="contains"
 sqlOperator="where"/>
 </select>

Figure 3. Elements and attributes that define an SQL
query and are contained in the "database.xml" file.

Application initialization information for the CMDB is

stored in a file called "struts-config.xml" as previously
mentioned. This file contains information about how to
connect to the backend relational database and it also
specifies various action mappings. The example in
Figure 4 shows how to connect to an Informix database
using a minimum of five and a maximum of ten keep-
alive connections in a connection pool. Connection
pooling in the CMDB enables faster database access by
eliminating the time required to create a database
connection for a given query. The Java classes that
comprise the connection pool are available in an
optional Struts jar file.

<data-source
 autoCommit="false"
 description="Informix Data Source"
 driverClass="com.informix.jdbc.IfxDriver"
 maxCount="10"
 minCount="5"
 password="myPassword"
 url="jdbc:informix-
sqli://myServer:myPort/mydb:informixserver=me"
 user="me"
/>

Figure 4. Database connection information.

Data that the user enters comprises the final

component of the model. This data is kept in a
FormBean relevant to the JSP that contains it. The
Struts controller instantiates this bean and it only exists
for the lifespan of a given request. Utilizing request
scope (rather than session scope) for this bean
enhances the scalability of the application since the
servlet engine need not waste memory for objects with a
longer lifespan - typically, session beans are maintained
for 30 minutes.

Struts utilizes the concept of reflection to match

components in an HTML form with fields in a JavaBean.
For example, the text field in the SimpleQueryFormBean
has a "property" called "queryString", as shown in
Figure 5. By using reflection, Struts invokes a setter
method in the SimpleQueryFormBean called
"setQueryString()", inserting the value that the user
entered into the method argument list.

<html:text property="queryString" size="16">

Figure 5. Struts HTML tag for a text field.

3. CONCLUSIONS

Despite a steep learning curve, the Struts controller
has proven to be a very solid foundation upon which to
build a web-based application. Whereas some web-
based applications rely exclusively upon inheritance to
implicitly control application behavior, Struts defines a
framework in the real sense in that it is a Java-based
controller to explicitly route predefined actions.

With the Struts JSP tags, we defined HTML widgets

and FormBeans that the Struts controller automatically
populated with values entered by the user. We utilized
an inbuilt error catching mechanism to verify the user
input and catch errors at any point in the thread of
execution. We also took advantage of Struts tags that
allowed us to locate language-specific text in a message
resource file, enabling multi-language browsing
capability.

With the "struts-config.xml" file we explicitly mapped

URLs to actions. In this file we defined relationships
between classes that defined behavior and FormBeans
that contained the user input data. We also defined
database connection information in this file.

Several peripheral aspects of Struts also added

required functionality. For example the Digester that
comes as part of Struts (and has been winnowed out
into its own project) is very useful for dynamically
generating objects. You define initial values for a target
object in an XML file and the Digester instantiates and
populates the object in memory. We utilized this
capability was to create the QueryObjects for each
query type.

As its name implies, Struts gave us a framework

upon which to build the CMDB and concentrate our
efforts on designing and coding core business logic.
Especially in an HTTP environment that lacks events
and callbacks, such as found in common desktop
applications, we were thankful to find a system that
could emulate these functional requirements. We
anticipate that others requiring the capabilities provided
by Struts will find it a sound framework on which to
build.

4. ACKNOWLEDGEMENTS

We gratefully acknowledge Craig R. McClanahan,
the initial author of the Struts framework. We also thank
Heidi Godsil for drafting Figure 2.

This paper was funded by cooperative agreements

from the National Science Foundation (NSF) and the
National Oceanic and Atmospheric Administration
(NOAA). The views expressed herein are those of the
authors and do not necessarily reflect the views of NSF
or of NOAA or any of its sub-agencies.

5. WORLD WIDE WEB LINKS

The COMET Multimedia Database:
 http://archive.comet.ucar.edu/moria/index.jsp
COMET Multimedia Database Documentation:
 http://www.comet.ucar.edu/appdoc/software/apps/
moria/index.html
The Jakarta Struts Project:
 http://jakarta.apache.org/struts/index.html

6. REFERENCES

Bergsten, H., 2001: JavaServer Pages, O'Reilly &

Associates, Sebastopol, CA, 552pp.
Hunter, J., Crawford, W., H., 1998: Java Servlet

Programming, O'Reilly & Associates, Sebastopol,
CA, 510pp.

http://archive.comet.ucar.edu/moria/index.jsp
http://archive.comet.ucar.edu/moria/index.jsp
http://archive.comet.ucar.edu/moria/index.jsp
http://jakarta.apache.org/struts/index.html

