
J4.3    SHORT-TERM RADAR NOWCASTING FOR HYDROLOGIC 
APPLICATIONS OVER THE ARKANSAS-RED RIVER BASIN 

 
Matthew P. Van Horne*, Enrique R. Vivoni and Dara Entekhabi 

Massachusetts Institute of Technology, Cambridge, MA 
 

Ross N. Hoffman and Christopher Grassotti 
Atmospheric and Environmental Research, Inc., Lexington, MA 

 
1.  INTRODUCTION 
 

The demand for rainfall forecasts with high spatial 
and temporal resolution has increased recently from 
different sources including operational hydrologic 
forecasters, water managers and meteorologists.  A 
general set of methods currently implemented for the 
generation of quantitative precipitation forecasts (QPFs) 
is radar nowcasting or short-term extrapolation 
(Browning and Collier 1989).  Early short-term 
forecasting algorithms relied on pattern recognition of 
rainfall echoes to calculate cross correlation coefficients 
and use them to predict storm motion and features 
(Einfalt et al. 1990). 

Nowcasting is the production of short-range (0-3 
hour lead times) precipitation forecasts using 
extrapolation methods (Smith and Austin 2000).  The 
widespread availability of high spatially and temporally 
resolved radar data in convenient digital form has given 
forecasters more accurate tools for the generation of 
forecasts for mesoscale phenomena (Browning and 
Collier 1989).  Radar-based nowcasting is perceived to 
have benefits over numerical weather prediction (NWP) 
models for short forecast lead-times (Zipser 1990). 

Nowcasting remains an active area of research, as 
there are still complications in its methodology and 
operational use.  One drawback is the simplicity of pure 
advection models (see Brémaud and Pointin 1993; 
Johnson et al. 1998; Pereira Fo. et al. 1999; Wolfson et 
al. 1999; Handwerker 2002) that do not account for 
storm growth and decay (Smith and Austin 2000), 
considered main factors in determining the limit of 
predictability for nowcasting.  

In this study, we present the application of a novel 
nowcasting model (Wolfson et al. 1999) for 
hydrometeorological forecasting in mid to large-scale 
basins.  Improvements in the accuracy of short-term 
rainfall forecasts are achieved due to the high spatial 
and temporal resolution in radar rainfall data.  The 
network of operational NEXRAD radars providing 
coverage over the Arkansas-Red River Basin (ARB) 
permits continuous radar-based nowcasting as a 
comprehensive short-term forecasting tool.  Section 2 of 
this study introduces the nowcasting model used while 
section 3 discusses the data used.  Evaluation criteria 
are described in section 4 and the results from case 
studies described in section 5 are available in section 6. 
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2.0 NOWCASTING MODEL 
 
2.1 Description 

The Growth and Decay Storm Tracker (GDST) 
developed by Lincoln Laboratory at the Massachusetts 
Institute of Technology (MIT LL) as part of the 
Integrated Terminal Weather System (ITWS; Evans and 
Ducot 1994) uses scale separation filtering to forecast 
mesoscale storm events (Wolfson et al. 1999).  The 
GDST improves on traditional cross-correlation analysis 
by using an elliptical filter to separate the large-scale 
storm features from smaller-scale cells before 
correlation, thus enabling improved tracking of the storm 
envelope.  Here we apply the GDST algorithm for large-
scale hydrometeorological modeling over operational 
hydrologic basins using radar rainfall data at higher 
spatial/temporal resolutions than previously reported.  
The model is forced with radar rainfall measurements to 
produce forecasts for lead-times up to 120 minutes in 
15-minute increments. Forecast verification uses radar 
rainfall images from the valid time for the forecast. 

MIT LL originally designed the GDST to forecast 
line storm progression near airport areas to improve 
flight routing during severe weather (Forman et al. 
1999).  For example, preliminary testing at the DFW 
airport used NEXRAD reflectivity data at a temporal 
resolution of 6 minutes and spatial resolution of 1 km 
over a 440 km by 440 km area (Theriault et al 2000). 
 
2.2 Image Filtering 

Separation of the small-scale, short-lived cells from 
the large-scale, longer-lived features of the storm before 
the correlation analysis can result in more accurate 
envelope forecasting and thus better overall forecasting.  
The GDST accomplishes this by passing an elliptical 
filter over the input rainfall field (Wolfson et al. 1999).  At 
each point in the field, the filter computes the average 
value of the filtered pixels, at 10º increments over 180º 

and assigns the maximum of the averages computed 
over the rotation to the base pixel in the filtered image.  
This filtering generates a smoothed large-scale image 
for use in the correlation analysis (Wolfson et al. 1999).  
The filter size and aspect ratio are two of the main 
parameters that affect model forecast skill.  To 
determine the optimal filter size for each data set, filter 
size tests were performed to ensure optimal 
performance by the GDST.  Optimal performance is 
determined by comparing the scores for each filter size, 
averaged over all lead-times. 
 
 
 
 



3.0 DATA 
 

Forecast accuracy is largely influenced by the 
quality and spatial/temporal resolutions of the rainfall 
data used for short-term extrapolation.  In this study, we 
compared two radar rainfall products from the Next 
Generation Radar (NEXRAD) system available over the 
entire United States: NEXRAD Stage III/P1 and 
Weather Services International (WSI) NOWrad product, 
with 2 km 15-minute native resolution (see Grassotti et 
al. 2002).  WSI uses NEXRAD reflectivity data along 
with proprietary Z-R relationships to derive rain amounts 
without incorporating surface rain gauge data.  The WSI 
product utilizes a "weather condition" approach to 
convert from reflectivity to rainfall rates with a precision 
of 1.27 mm hr-1.  

Grassotti et al. (2002) showed several 
characteristics of the two radar rainfall products through 
a comparison of the WSI data, Stage III/P1 and gauge 
data over the ABRFC.  The main difference between the 
data sets was Stage III/P1 data tended to overestimate 
low rainfall rates (0-2 mm hr-1) due to the mean bias 
correction performed when merging radar and gauge 
data.  If systematic biases do not dominate WSI data, it 
should be superior to gauge data and roughly equivalent 
to Stage III/P1 data for the purposes of hydrologic 
forecasting (Grassotti et al. 2002). 

The location used in this study is the Arkansas-Red 
River Basin River Forecasting Center (ABRFC) region.  
The ABRFC coverage area includes parts of Oklahoma, 
Texas, Arkansas, Missouri, Kansas, Colorado and New 
Mexico, and is over 500,000 km2 in area.  One sub-
basin in the eastern portion of the ABRFC, the Illinois 
River basin (5851.8 km2), is the focus of additional 
hydrologic analysis in this study. 
 
4.0 MODEL PERFORMANCE CRITERIA 
 

Full analysis of GDST forecasts requires a 
combination of meteorological and hydrological 
statistics.  The combination of the two types of 
measures enables a better understanding of the space-
time accuracy of the forecasted rainfall.  A contingency 
table approach is the basis for meteorological scoring.  
The critical success index (CSI) is used for this purpose 
(Wilks 1995): 
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Hits (H) are pixels where both the forecast and 
observed values exceed a specified threshold, misses 
(M) occur when the observed pixel exceeds the 
threshold but the forecast pixel does not, and false 
alarms (FA) occur when only the forecast pixel exceeds 
the threshold.  A high CSI score indicates a large 
degree of positional correspondence between the 
forecast and observed images. 

Threshold-based and verification area CSI scoring 
are used in this study to discriminate model 
performance over varying rainfall intensity and varying 
degrees of spatial positioning.  We define thresholds 
based on the cumulative rainfall distributions for each 

storm.  The designations “low”, “median” and “extreme” 
correspond to the 0th, 50th and 90th rain rate percentiles, 
respectively.  A verification area CSI searches in a 
kernel surrounding the pixel in question in the observed 
image to verify the corresponding pixel in the forecast 
image. 

These statistics provide a generalized description of 
the locational accuracy of the forecasts over a large 
area.  The CSI only scores the percent of correctly 
placed non-zero pixels in relation to the observed image 
but does not address the geographical positioning of the 
rainfall forecasts.  The nature of the CSI as a large-
scale measure also does not indicate whether the 
forecast may be useful for hydrologic modeling at the 
basin scale. 

A trio of hydrologic measures described by Smith et 
al. (2002) evaluates the accuracy of the intensity, extent 
and distribution of the forecasted rainfall within a 
catchment.  The mean areal precipitation (M(t)), the 
fractional coverage with rainfall exceeding the low 
(F0(t)), median (F50(t)), and extreme (F90(t)) thresholds, 
and the normalized distance to the basin outlet (D(t)) for 
each threshold accomplish this purpose.   
 
5.0 CASE STUDIES 
 

Three storm events were chosen for this study from 
the period of 1998-2000.  Each of these storm events 
was chosen based on rainfall intensity and duration, 
since longer, more intense storms are hydrologically 
more significant. 

 
5.1 Event A 

This highly organized linear storm event impacted 
the ABRFC area for the duration of 5 October 1998.  
The storm initially developed as several individual cells 
over central Oklahoma and slowly developed into a 
linear band but did not move significantly during this 
organization.  This storm was the result of a strong 
dynamic forcing event caused by a cutoff low in the 
upper atmosphere.  The event impacted the Illinois 
River basin from 1200 UTC to 2000 UTC and then 
continued its decay while the remnants moved out of the 
ABRFC. 

 
5.2 Event B 

This storm developed over western Oklahoma as 
an unorganized, seemingly chaotic rainfall event, early 
on 4 January 1998.  The degree of organization varies 
over the course of the day, ranging from well-defined 
individual thunderstorms to large areas of stratiform rain 
to linear groups of convective cells.  This event was not 
as well organized as Event A but still impacted the 
Illinois River basin for a period of approximately 14 
hours attaining similar areal averaged precipitation 
levels. 

 
5.3 Event C 

This storm event begins as a mix of linear and 
chaotic elements, loses its organization for a period then 
recovers some of its linear features.  Throughout the 
period of 1200 UTC 13 April 1999 through 1200 UTC 14 



April 1999, there is a constant presence of linear 
characteristics but not as strongly organized as Event A.  
Several different groups of individual convective cells 
emerge at various times but were never able to maintain 
a linear formation for significant periods.  This storm did 
not greatly affect the Illinois River basin, only providing 
rainfall for a few hours on the morning of 14 April 1999. 
 
6.0 RESULTS 
 

Assessing the GDST forecast value in a 
hydrometeorological forecast is the focus of this section.  
The performance measures were applied to forecasts 
generated from data of different spatial and temporal 
resolution to explore the impact on forecast accuracy. 

 
6.1 Threshold Dependence 

A comparison between NEXRAD Stage III/P1 and 
WSI data (4 km and 1-hour resolution) was performed to 
determine the relative accuracy between the data 
sources.  The finer resolution (2 km, 15-minute) WSI 
data allows a wider range of spatial and temporal 
resolutions to be used in evaluating GDST forecast skill.  
The cumulative rainfall rate distributions for each of the 
two data sets underlie the threshold-dependent curves 
shown in Figure 1. 

 
Figure 1.  CSI as a function of threshold percentile 
for Event A using NEXRAD and WSI 4 km, 60 minute 
resolution data.  The data points are the mean 60-
minute forecast scores over the duration of the 
event. 

Difference between WSI and NEXRAD CSI scores 
in Figure 1 for low threshold values is attributed to the 
mean bias correction algorithm used for incorporating 
radar data with sparse rain gauges.  This results in the 
overestimation of low rain rates as compared to the WSI 
product (Grassotti et al. 2002).  The two data sets are 
similar over the majority of their range and are 
especially close at high rainfall rates.  That similarity 
implies that the two data products are interchangeable 
for the purposes of this study.  For the remainder of this 
paper, WSI data will be used in GDST analysis due to 
the data availability with increased temporal and spatial 
resolution and the higher forecast accuracy over the 

entire range.  Decreases in CSI with increasing 
threshold are expected and may be important for 
hydrometeorological forecasting. 

 
6.2 Lead-time Dependence 

All three events were evaluated to examine the 
decrease in forecast skill as a function of lead-time and 
storm type.  Figure 2 shows forecast skill (CSI) as a 
function of lead-time for Events A, B, and C for low, 
median and extreme threshold rainfall rates. 

 
Figure 2.  CSI scores versus lead-time for the three 
storm events using WSI 4 km, 15-minute data.  The 
data points shown are the average values over the 
duration of the storm. 

A main feature shown in Figure 2 is higher Event A 
scores were expected based on the more organized 
linear squall line relative to the other events.  As 
expected Figure 2 showed the dependence of GDST 
forecast skill on storm organization.  The true value of 
these forecasts may not be entirely represented by 
Figure 2 since no extended kernel in the observed 
image was used for verification. 
 
6.3 Verification Area Dependence 

The size of the kernel used for forecast verification 
is an important parameter affecting the resultant CSI 
score.  Scores calculated using a large kernel size might 
not provide relevant information about the forecast 
quality or accuracy.  However, small kernels may not 
capture the full forecast value in cases where exact 
prediction is not a necessity.  Operationally, the chosen 
kernel size reflects the importance of a shift or lag in the 
forecasted image, with kernel size varying inversely with 
necessary precision.  Figure 3 shows the effect of 
varying the size of the verification kernel on the one-
hour CSI scores, using WSI 2 km, 15-minute data for 
Events A and C. 

Over a comparable kernel area, 484 km2, Events A 
and C scored within the 50-70% range obtained by 
Cartwright et al. (1999).  This method of scoring may be 
beneficial for hydrological analysis as rain forecasted 
within a few kilometers of its actual location may still be 
useful for hydrologic modeling. 

 



 
Figure 3.  CSI versus verification area size for 
Events A (top) and C (bottom) using WSI 2 km, 15-
minute data.  The data points are the average values 
over the duration of the event at each verification 
area size. 

6.4 Comparison to Persistence Forecast 
Persistence is used to evaluate if the GDST 

forecasting method provides an improvement over a 
simpler method.  Figure 4 shows the areas where the 
forecasting methods (GDST or persistence) either over- 
or underestimate rainfall for the 60-minute lead-time 
forecast in Event A.  In this specific case, the GDST 
generally overestimated the leading edge of the storm, 
leading to more risk-averse hydrologic forecasting.  
Another benefit of the GDST over persistence is the 
distribution of the over- and underestimated pixels 
throughout the storm area where, predictably, 
persistence resulted in large contiguous areas of over- 
and underestimation.  Overall, the use of filtering and 
extrapolation within the GDST result in a more accurate 
forecast as compared to persistence. 
 
6.5 Hydrologic Analysis 

The meteorological statistics analyzed to this point 
provide only one insight into the quality of rainfall 
forecasts while basin-based hydrologic statistics show 
different features and further explore the applicability of 
the forecasts.  Figure 5a shows the location of the 
Illinois River basin within the ABRFC and a 4 km 
resolution digital elevation model (DEM) of the basin 
(5,851.8 km2).  In Figures 5b-d, the solid lines represent 
the observed images while the dashed lines represent 
the 60-minute forecast images for Event A.  Figure 5b 
shows the values of the 60-minute M(t), mean areal 
precipitation, over the Illinois River basin.  The GDST 
predicts magnitudes and timings of the peaks 
moderately well but the magnitude overestimation will 
result in more risk-averse flood forecasting. 

 
Figure 4.  The areas where the GDST (a) and the 
persistence (b) 60-minute forecasts erred in their 
rain rate magnitude estimates.  Black areas indicate 
underestimation of rain rate magnitude while gray 
areas indicate overestimation. 

Figure 5c shows the values for F0(t), the fractional 
rainfall coverage over the Illinois River basin.  Figure 5d 
shows normalized distance to outlet, D(t), values for the 
observed storm event and the 60-minute forecasted 
storm event.  The horizontal line at D(t) = 0.58 
represents the normalized distance for uniform rain over 
the basin.  The GDST 60-minute forecast curve shows a 
slight lag in time behind the observed curve for both F(t) 
and D(t). 
 
7.0 Conclusions 
 

High spatial/temporal resolution radar precipitation 
estimates greatly improve nowcasting for hydrologic 
modeling.  The GDST nowcasting model produces 
forecasts that have potential for hydrologic use as 
illustrated by a combination of meteorological and 
hydrologic measures.  Rainfall threshold evaluation of 
the GDST provided valuable information about the 
model capability to correctly locate different intensities 
of rainfall.  The combination of the extreme threshold 
with an increased verification kernel shows that the 
GDST forecasts high rainfall rates with moderate 
accuracy.  Hydrologic usefulness of GDST forecasts is 
further shown via a trio of basin-based measures and 
the GDST performs reasonably well in its prediction of 
rainfall intensity, extent and distribution over the Illinois 
River basin.  Active research continues in the use of 
GDST forecasts for hydrometeorologic modeling. 



 
Figure 5.  a) Location of the Illinois River basin.  b-d) Hydrologic analysis of Event A over the Illinois River 
basin.  Forecast values are dotted lines and observed values are the solid lines. 

8.0 Acknowledgements 
We thank MIT Lincoln Lab for the use of the GDST 

nowcasting model and particularly Barbara Forman and 
Bob Hallowell for help with specific problems.  Weather 
Services International, Inc and the NWS Hydrology 
Laboratory provided the radar rainfall data used in this 
study.  This work was partially funded by the US Army 
Research Office (contract DAAD19-00-C-0114) and the 
American Meteorological Society Dr. Pedro Grau 
scholarship (2001-2002). 

 
9.0 References 
Brémaud, P.J. and Y.B. Pointin, 1993: Forecasting 
heavy rainfall from rain cell motion using radar data.  J. 
Hydrol., 142, 373-389. 
 
Browning, K.A. and C.G. Collier, 1989: Nowcasting of 
Precipitation Systems.  Rev. Geophys., v.27, n.3, 345-
370. 
 
Cartwright, T.J., M.M. Wolfson, B.E. Forman, R.G. 
Hallowell, M.P. Moore and K.E. Theriault, 1999: The 
FAA Terminal Convective Weather Forecast Product: 
Scale Separation Filter Optimization.  29th International 
Conf. on Radar Meteorology, Montreal, Quebec, 852-
855. 
 
Einfalt, Thomas, Thierry Denoeux and Guy Jacquet, 
1990: A Radar Rainfall Forecasting Method Designed 
for Hydrological Purposes.  J. Hydrol., 114, 229-244. 
 

Evans, James E. and Elizabeth R. Ducot, 1994: The 
Integrated Terminal Weather System (ITWS).  The 
Lincoln Laboratory Journal, v.7, n.2, 449-473. 
 
Forman, B.E., M.M. Wolfson, R.G. Hallowell, and M.P. 
Moore, 1999: Aviation User Needs for Convective 
Weather Forecasts.  Presented at the American 
Meteorological Society 79th Annual Conf. 
 
Grassotti, Christopher, R. N. Hoffman, E. R. Vivoni and 
D. Entekhabi, 2002: Intercomparison of Radar and Rain 
Gauge Observations over the Arkansas-Red River 
Basin.  Submitted to Wea. Forecasting. 
 
Handwerker, Jan, 2002: Cell tracking with TRACE3D – 
a new algorithm.  Atmospheric Research, 61, 15-34. 
 
Johnson, J.T., Pamela L. MacKeen, Arthur Witt, E. 
DeWayne Mitchell, Gregory J. Stump, Michael D. Eilts 
and Kevin W. Thomas, 1998: The Storm Cell 
Identification and Tracking Algorithm: An Enhanced 
WSR-88D Algorithm.  Wea. Forecasting, 13, 263-276. 
 
Pereira Fo., Augusto J., Kenneth C. Crawford and David 
J. Stensrud, 1999: Mesoscale Precipitation Fields.  Part 
II: Hydrometeorological Modeling.  J. Appl. Meteor., 38, 
102-125. 
 
Smith, James A., Mary Lynn Baeck, Yu Zhang, and 
Charles A. Doswell III, 2001: Extreme Rainfall and 
Flooding from Supercell Thunderstorms.  J. Hydromet., 
2, 469-489. 



 
Smith, K.T. and G.L. Austin, 2000: Nowcasting 
precipitation - a proposal for a way forward.  J. Hydrol., 
239, 34-45. 
 
Theriault, K.E., M.M. Wolfson, B.E. Forman, R.G. 
Halowell, M.P. Moore and R.J. Johnson Jr., 2000: FAA 
Terminal Convective Weather Forecast Algorithm 
Assessment. Preprints, Ninth Conf. on Aviation, Range, 
and Aerospace Meteorology. 
 
Wilks, D.S., 1995: Statistical Methods in Atmospheric 
Sciences.  Academic Press, New York, 464 pp. 
 
Wolfson, M.M., B.E. Forman, R.G. Hallowell, and M.P. 
Moore, 1999: The Growth and Decay Storm Tracker.  
Preprints, Eighth Conf. on Aviation, Range and 
Aerospace Meteorology, Dallas, TX, Amer. Meteor. 
Soc., 58-62. 
 
Zipser, E., 1990: Rainfall predictability: When will 
extrapolation-based algorithms fail?  In Eighth Conf. on 
Hydrometeorology, 138-142. 
 


