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1.  INTRODUCTION 
 

Flood forecasting can be improved through the 
integration of short-term radar nowcasting and 
distributed hydrologic modeling. For short lead 
times (0-3 hrs), the extrapolation of NEXRAD 
rainfall estimates can improve the lead time and 
accuracy available for issuing flood forecasts as 
compared to rainfall persistence or climatology. 
Distributed hydrologic models explicitly account for 
rainfall variability and provide forecasts of the 
lumped and distributed basin response.  

In this paper, we present the use of the 
Growth and Decay Storm Tracker (GDST) as a 
quantitative precipitation forecast (QPF) input to 
the TIN-based Real-time Integrated Basin 
Simulator (tRIBS). Flood forecasts issued by the 
distributed model based on the extrapolation QPF 
are developed for two nested basins in the Illinois 
River for a selected squall line storm in 1998. 

Quantitative Flood Forecasts (QFFs) are 
assessed as a function of forecast lead time and 
basin scale using either a single or updating 
forecasting mode. Comparisons to a persistence 
forecast illustrate the limits of predictability offered 
by QFFs. An analysis of the error propagation 
from the GDST method to the tRIBS flood forecast 
is also presented. 
 
2.  DISTRIBUTED FORECASTING TOOLS 
 
2.1  Growth and Decay Storm Tracker 
 

The Growth and Decay Storm Tracker (GDST) 
is a short-term radar extrapolation model originally 
designed for 0-1 hour radar reflectivity and gust 
prediction in aviation applications (Wolfson et al. 
1999). The GDST model is distinguished by its 
ability to separate the storm envelope motion from 
embedded convective cells through the use of a 
scale separation filter. Recently, Van Horne et al. 
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(2002) have applied and evaluated the GSDT 
model for 0-2 hour radar rainfall forecasting over 
operational watersheds in the Arkansas-Red River 
Basin. Results confirm that the GSDT model has 
skill in predicting high-resolution rainfall fields 
(0.25 to 1 hr, 2 to 4 km), in particular for linear, 
organized events driven by large-scale forcing. 
 
2.2  TIN-based Real-time Integrated Basin 
Simulator (tRIBS) 
 

The tRIBS model is a physically-based, 
distributed hydrologic model developed for 
continuous, real-time flood forecasting (Ivanov et 
al., 2002). Modeling the coupled surface and 
groundwater response to rainfall is achieved by 
tracking infiltration moisture fronts and lateral 
exchanges in the vadose and saturated zones. 
Surface runoff is generated via four mechanisms: 
infiltration-excess, saturation-excess, perched 
subsurface stormflow and groundwater discharge. 
Routing of surface flow is achieved via hydrologic 
and hydraulic routing in overland and channel 
segments, respectively. 

The computational structure in tRIBS is based 
on a triangulated irregular network (TIN) terrain 
model. Vivoni et al. (2002) demonstrated how this 
multiple resolution domain allows efficient 
modeling of mid to large-scale watersheds without 
the loss of topographic information. Given the 
advantages of TINs over grid methods, tRIBS can 
be applied to operational basins for real-time flood 
forecasting, including the prediction of spatially-
distributed states and fluxes. 
 
3.  DISTRIBUTED QFF FRAMEWORK 
 

A rainfall forecasting mode within the tRIBS 
model enables specifying forecast times, intervals 
and rainfall products. In real-time operation, a 
distributed QFF can be issued every time a new 
quantitative precipitation estimate (QPE) is 
available. For each QPE, a series of rainfall 
forecasts up to a lead time (tL) can be issued by 
the GDST. Two modes of forecast operation are  



 
Figure 1. Single forecast QFF mode. 

 
currently implemented: (1) single forecast issued 
at a specific forecast time (tO) and (2) multiple 
forecasts at a specified update rate. Figure 1 
illustrates the single forecast mode. The tRIBS 
model utilizes NEXRAD QPEs up to tO. During the 
forecast interval (tO to tF), the model is forced with 
the GDST QPF up to the lead time (tL) and then by 
a space/time mean rainfall (MAPx) up to the 
forecast interval (tF). Both the GDST and MAPx 
are derived from the radar data available up to tO. 
The MAPx product is computed from: 
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where R(x,y) is the radar rainfall rate and A is the 
basin area. Determining the initial forecast time 
(tO) is based on sampling the rainfall cumulative 
distribution at a specified percentile.  

The multiple forecast mode emulates the real-
time operation of a coupled forecasting system. A 
GDST forecast is issued for each QPE up to an 
update lead time tL. The tRIBS model is forced 
with the forecasts up to tL for each available 
rainfall data. This forecast updates the GDST 
model at a marching tO with all prior QPEs. The 
updating mode can be applied over the entire 
forecast interval (tO to tF), eliminating the need for 
the MAPx product. The resulting QPF sequence 
consists of a temporal interpolation of available 
radar QPEs using the GDST model. Increasing the 
update lead time results in a decrease in QPF 
forecast skill as the extrapolation cannot properly 
represent storm growth and decay dynamics 
(Wolfson et al. 1999). 

 
Figure 2. Baron Fork and Peacheater Creek. 

 
4.  STUDY BASINS AND DATA 
 

Quantitative flood forecasts using the GDST  
and tRIBS models are developed for the Baron 
Fork (808 km2) and Peacheater Creek (64 km2) in 
Oklahoma. Figure 2 illustrates the topographic 
representation of the nested basins within the 
tRIBS model, including the channel network. 
USGS 30-m DEM data were used to develop a 
hydrologically-significant TIN terrain model (Vivoni 
et al., 2002). STATSGO soil and AVHRR land 
cover data were used to specify model parameters 
prior to calibration (Ivanov et al., 2002).  

In this study, we present the distributed QFF 
for one storm period in 5-6 October 1998. Rainfall 
forcing to the tRIBS model for each event consists 
of the hourly NEXRAD Stage III QPE and QPFs. 
Meteorological forcing used to drive the surface 
energy and radiation balances is obtained from 
gridded weather station observations. Finally, 
streamflow observations at the Baron Fork and 
Peacheater Creek USGS stations are available at 
hourly intervals for the storm events. 
 
5.  RESULTS 
 

The tRIBS distributed model has been used in 
flood hindcasting studies in the Baron Fork basin 
over the 1997-2000 period using NEXRAD QPEs 
(Ivanov et al., 2002). Through these efforts, a 
manual calibration strategy was developed to 
reproduce outlet and interior flow observations. 
Here, we use a calibrated model run using the full 
radar observations (QPEs) as a benchmark for 
comparing flood forecasts issued in the single or 
updated modes. Figure 3 illustrates the calibrated 
model results for the 5-6 October 1998 event. 
Note the time to peak and recession are well 
reproduced while the peak discharge is slightly 
underestimated.  



 
Figure 3. Observed (--) and simulated () flows. 
 
5.1  Single Forecast Mode 
 

The performance of a single GDST QPF as 
forcing to the tRIBS model is evaluated at various 
forecast times (tO) for the storm event. Due to the 
hydrologic model sensitivity to rainfall, a flood 
forecast is a useful metric of QPF skill. Differences 
between QFFs and the benchmark are due to 
GDST errors in rainfall timing, location and 
intensity relative to the QPE. These errors vary 
along the marching forecast time.  

Rainfall forecasts up to 12 hours were issued 
for six consecutive tO during the rising limb of the 
rainfall event. The six QPF forecasts span tO = 12 
to 17 UTC on 5 October 1998. The tRIBS model is 
forced with the 1 to 12 hour GDST QPFs from tO to 
tL, after which the MAPx product is used. Figure 4a 
shows the cumulative mean areal rainfall 
normalized by the observed total precipitation. For 
small tO, the GDST overestimates actual rainfall, 
while the opposite occurs as tO increases. 

tRIBS flood forecasts over a 30 hr period after 
tO are shown in Figure 4b. The cumulative 
discharge at Baron Fork is normalized by the total 
runoff volume. Errors in the GDST 12-hr QPFs are 
amplified in the hydrologic model response. 
Results suggest that the model is more sensitive 
to rainfall overestimation. The best QFF 
performance is observed for tO > 16 UTC, when 
more than 50% of the total rainfall has fallen.  
 
5.2  Updating Forecast Mode 
 

Given the limitations of the single QFFs, the 
rainfall-flood forecast system should utilize new 
rainfall estimates as these become available. In 
real-time operation, radar data may be updated 
every 6-10 minutes. For Stage III QPEs, the 
temporal resolution limits the update rate to hourly 
intervals. Improvements to the QFFs based on 

 
Figure 4. Single GDST QPFs and tRIBS QFFs. 
Normalized cumulative rain (a) and discharge (b).  
 
updating the QPFs at different lead times (tL) is 
tested for the storm event at tO = 15 UTC on 5 
October 1998. This corresponds to the 30th 
percentile of the cumulative rainfall. An updating 
forecast at tO could have a large impact on QFF 
skill as compared to the single 12-hr forecast. 

Figure 5a shows the normalized cumulative 
rainfall over the Baron Fork for the 1 to 3 hour 
update GDST QPFs. As anticipated, QPF 
performance improves with more frequent 
updating. These improvements translate to added 
QFF skill as compared to the 12-hr single QFF 
(Figure 5b). Additional tests for update rates tL > 3 
hrs showed a decrease in QPF and QFF skill. 
 
5.3  QPF and QFF Skill 
 

The performance of the distributed QPF and 
QFFs is quantitatively assessed for the storm 
event using the Nash-Sutcliffe efficiency (E) and 
the deviation of runoff volumes (Dv) defined as: 
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Figure 5. Updating GDST QPFs and tRIBS QFFs. 
Normalized cumulative rain (a) and discharge (b).  

 
where Qo is the observed flow, Qs is the simulated 
discharge and the overbar denotes the average 
observed flow over the period, and 
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where Vo is total observed event volume and Vs is 
the simulated event volume, respectively. For a 
perfect forecast, E = 1.0 and Dv = 0. To assess the 
impact of lead time and basin scale on QFFs, we 
use the hydrographs from the QPE-generated 
model run as ground-truth values in (2) and (3).  
 
5.3.1 Lead-time dependence 
 

The dependence of the updating forecast 
scheme on lead time, as measured by the metrics 
E and Dv, is shown in Figures 6a and b. The 
performance of the GDST-tRIBS forecast is 
gauged relative to a Persistence Forecast (P) 
issued in the updating mode. Persistence QPF is 
defined here as a rainfall forecast using the last 
available radar QPE up to the update lead time 
(tL). Persistence QFF is the tRIBS model response 
to this persisted rainfall over the interval (tO to tF).  

Interpretation of Figure 6 provides insight into  

 
Figure 6. GDST QPF and tRIBS QFF skill as 
compared to Persistence for Baron Fork.  
 
the skill of the GDST-tRIBS forecasts. The metrics 
are determined for both the mean areal rainfall 
and discharge in Baron Fork. First note from the 
QPFs that GDST and P have E ~ 1.0 for all lead 
times, suggesting the rainfall timing is similar to 
the QPE. Also note the QPF Dv varies with update 
time for the GDST but remains close to zero for P. 
This suggests the GDST QPF has biases in the 
rainfall volume relative to the QPE which increase 
with the update rate (32% bias at 3-hr). 

The tRIBS QFFs amplify errors in rainfall 
volume as illustrated by Dv and E in Figure 6. A 
linear relation is observed between rainfall and 
discharge volume errors (Figure 7), suggesting an 
amplification factor of 2.24. These volume errors 
also impact the discharge E, as this is reduced by 
a factor 1.72 for a unit increase in rainfall Dv. Both 
trends suggest that GDST performance is weak in 
terms of predicting high rainfall intensities, as 
shown by Van Horne et al. (2002). 
 
5.3.2 Scale dependence 
 

The dependence of forecast skill on scale is 
assessed by comparing results from the pair of 
nested basins (Figure 1). Since tRIBS simulates  



 
Figure 7. Propagation of volume error from QPFs 
to QFFs for Persistence (Ο) and GDST (�) over 
the Baron Fork and Peacheater Creek basins. (a) 
Discharge volume error. (b)Discharge Efficiency. 
 
the distributed basin response, hydrographs can 
be produced for any interior channel node. The 
Peacheater Creek basin occupies nearly 8% of the 
Baron Fork basin, reducing the number of 
observed radar pixels from 50 to 4. This reduction 
in radar scale should affect forecast performance if 
the spatial variability in radar rainfall is high.  

A comparison of QFFs for Baron Fork (Figure 
5b) and Peacheater Creek (Figure 8) reveal 
notable differences. In particular, the 1-hour 
update QFF overestimates the QPE ground-truth 
at the smaller scale. This suggests that the ratio of 
radar to basin scales is of practical importance for 
distributed QFFs. Also note the 30-hr QFFs for the 
smaller basin includes a higher fraction of the total 
discharge due to the shorter basin response time.  

To address issues of scale, the basin lag time 
(tB) can be used to capture temporal differences 
among watersheds. This time scale can serve as 
scaling factor for QPF lead time (tL). For equal 
tL/tB, QFF skill is expected to be similar, if tB is an 
adequate scaling parameter. During this storm 
event, tB = 11 and 21 hrs for the Peacheater Creek 
and Baron Fork, respectively. The 1-hour update  

 
Figure 8. Updating GDST QFF for the Peacheater 
Creek basin.  
 
QFF for the Peacheater Creek (PC) and the 2-
hour update QFF for the Baron Fork (BF) have 
similar discharge efficiency (E) values when forced 
by the persistence (EPC = 0.92; EBF = 0.92) and 
GDST (EPC = 0.39; EBF = 0.49) rainfall forecasts. 
These results suggest that tB can appropriately 
scale QFF skill over nested basins.  
 
6.  DISCUSSION AND CONCLUSIONS 
 

Results from this study confirm that compared 
to conventional flood hindcasting, the forecasting 
problem is more complex. For distributed 
hydrologic models, this complexity is increased as 
the sensitivity to the intensity and spatial 
distribution of rainfall estimates is high. A ‘perfect’ 
flood forecast will only be achieved if the rainfall 
forecast can place the precise quantity of rain at 
the precise place and time.  

In this study, we have shown how forecast 
errors from a short-term radar extrapolation 
method (GDST) and a persistence forecast (P) 
propagate and amplify in the interior and outlet 
flood forecasts from a distributed model. The 
errors in the GDST-tRIBS QFF are attributed to 
rainfall intensity since the model is insensitive to 
the rainfall spatial variability over this storm 
forecast interval. The low GDST accuracy for high 
rainfall has been credited to the lack of dynamic 
storm growth and decay in the extrapolation 
method (e.g., Van Horne et al. 2002).  

Future work with the GDST and tRIBS models 
will focus on the effect of storm characteristics and 
basin scale on QFF performance. In this study, we 
only illustrated results for a single storm event. 
GDST performance should differ for other events 
or sequence of events relative to the simple 
persistence forecast. The variation of forecast 
accuracy over the storm evolution also needs to 



be addressed. Nevertheless, we have shown with 
this case study how a distributed hydrologic model 
is a useful metric for evaluating QPF performance.  
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