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ABSTRACT 
* 

A new statistical method for 
downscaling is introduced. The method is based 
on the application of neural network models and 
kriging algorithm to estimated atmospheric 
variables in three-dimensional space.  Artificial 
neural networks (ANN) were used to interpolate 
atmospheric data in the vertical domain while 
the kriging algorithm was used to perform 
horizontal interpolation. This methodology was 
used to convert a very limited radiosonde data 
set for the Caribbean basin to a gridded set of 
data at 11 vertical levels.  The proposed 
estimation scheme can be used to establish the 
initial and boundary conditions to run a regional 
atmospheric modeling system (RAMS).   
Estimation of atmospheric variables can also be 
used to identify short- and long-term correlations 
between upper-air variables with surface climate 
events, such as hurricane tracking and intensity. 
Atmospheric variables estimated solely by 
radiosonde observations were compared with 
National Center for Environmental Prediction 
(NCEP) data.  Sixteen days were randomly 
selected from two dry and two wet months in an 
arbitrary year, 1995.  Estimation based on 
radiosonde observations was in agreement with 
NCEP data for the eleven mandatory pressure 
levels.  Furthermore, cross-validation techniques 
with five years of radiosonde observations were 
used to test the proposed methodology and 
satisfactory results were obtained.  Cross-
validation results indicate that the proposed 
methodology is a potential tool to obtain 
estimation of atmospheric variables with a high 
resolution.  The suggested estimation scheme 
can be improved by including the NCEP data as 
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an additional source of information.  The 
proposed technique can be used to increase 
resolution by incorporating temporary soundings 
that may be obtained during the generation of a 
hurricane.  The algorithm can also include 
airplane information of critical events. 
 
1. INTRODUCTION 
 

Here we discuss a new statistical 
method for downscaling, to increase resolution 
of atmospheric variables   The method is based 
on the application of neural network models and 
kriging algorithm to estimate gridded 
atmospheric variables in three dimensional 
space which are derived from a few irregularly 
distributed radiosonde observations.     

The relationships between local 
climatological events and resulting large-scale 
phenomena are highly nonlinear, often chaotic, 
and change with atmospheric circulation. This 
creates the need for novel mathematical 
techniques.   Artificial neural networks (ANN) 
were used to interpolate atmospheric data in the 
vertical domain while the kriging algorithm was 
found to be an efficient estimator to interpolate 
horizontal data.   The Kriging algorithm is one of 
the most prominent techniques to perform 
spatial interpolation, and was introduced by 
Georges Matheron (1979).  This algorithm 
weights observations based on the spatial 
variability of the process realization.    This 
technique has also been expanded to interpolate 
simultaneously several variables (Carr et al. 
1985).    We used the Kriging algorithm to 
perform horizontal interpolation of atmospheric 
variables because this method provides 
consistent and efficient estimates in the 
horizontal domain.  This algorithm is also 
optimal in the sense that the interpolation error 
at the actual observed value is zero. 



 

ANN is an emerging technique that can 
be used to classify a set of apparently non-
related climatic variables or to model the 
multivariate inputs and outputs of a dynamic 
system.   ANN has the advantage of learning 
from data that exhibits either highly nonlinear 
relationship since the inherent transfer functions 
are nonlinear in nature.  To develop a nonlinear 
model via ANN reduces the problem of 
identifying the appropriate transfer function and 
the number of neuron in the hidden layer.   

Several researchers have reported 
successful applications of the neural networks 
methodology to atmospheric sciences and 
climate dynamics.  Snell (et al. 2000) pointed out 
that many climate studies require generating 
estimates of climate variables at a given location 
based on values from other locations.  They 
suggest a methodology based on ANN to 
estimate temperatures for some locations given 
information from a lattice of surrounding 
locations.  They found that ANN outperforms 
some conventional methods such as spatial 
average, nearest neighbor, and inverse distance 
method.   Malmgren and Winter (1999) used 
rainfall and temperature data along with principal 
component analysis and neural network to 
identify climatic zones on Puerto Rico.   Aviolat 
(et. al 1998) apply an ANN to describe the 
creation of clouds at different layers.  Grecu and 
Krajewski (2000) proposed a methodology for 
detecting anomalous propagation echoes in 
radar data.  They used a neural network model 
to classify the base scan radar echo into the 
anomalous propagation echoes or rain classes.  
They pointed out that the neural network 
approach presents a conceptual simple yet 
rigorous way to address the problem of 
detecting anomalous propagation echoes . 
Tangang (et al., 1998) applied neural network 
methodology to forecast the sea surface 
anomaly on three regions: el Niño 4, el Niño 3.5, 
and el Niño 3.  Hesieh (2001) applied nonlinear 
principal component analysis (NLPCA) based on 
a neural network model to the Tropical Pacific 
SST.  Hesieh and Wu (2001) applied nonlinear 
singular spectrum analysis (NLSSA) to the 
Southern Oscillation Index and found that the 
first mode exhibits a 52-month period while the 
second mode shows a 32-month period.  They 
showed that NLSSA is superior to singular 
spectral analysis and to classical Fourier 
spectral analysis.   

In this paper artificial neural networks 
and kriging algorithm were implemented to 
model a nonlinear atmospheric dynamic system 

in the Caribbean basin among eleven mandatory 
pressure levels to estimate atmospheric 
variables from the sea surface up to 17 km of 
elevation.  The estimation scheme can be used 
for other purposes e.g. to derive correlations 
between upper-air variables with rainfall and 
temperature processes, and to develop initial 
and boundary conditions to run a regional 
climate numerical model. 

 
2. METHODOLOGY 
 

The estimation scheme includes three 
main tasks.  (1) A quality control system that is 
designed to identify incorrect values and replace 
them with reasonable estimates. (2) The Kriging 
algorithm was used to perform horizontal 
interpolation for each atmospheric variable at 
each pressure level.  (3) Neural network models 
were used to perform nonlinear vertical 
interpolations to properly estimate the 
atmospheric variables in the Caribbean.  

 
 2.1 Quality Control System.   
 
Upper air observations began in the 1940’s 

but a large numbers of observations became 
available only in 1957.  Today, 90 countries 
operate about 1000 radiosonde stations that 
observe upper air parameters up to four times 
per day at internationally agreed-upon times.  
The study Caribbean region (10°N – 30°N and 
60°W – 90°W) includes 67 radiosonde stations.  
The atmospheric variables measured by 
radiosonde are known as raob data and include 
the following variables: pressure (mb), 
geopotential height (m), air temperature (Co), 
dew point (Co), wind direction (degrees), and 
wind speed (m/s).  Raob data occasionally 
exhibit assignable errors, whose origins are 
either instrumental or man made.  A quality 
control system was designed to identify and 
correct the errors by studying a representative 
random sample.  The selected random sample 
was drawn from five years of raob data to 
identify the appropriate percentiles.   Four days 
of every month were randomly selected from the 
following years: 1994, 1995, 1998, 1999, and 
2000.   1996 and 1997 were unavailable at the 
time the study was performed.  Of the 67 
radiosonde stations which were studied only 
seven are consistently working and about 10 
stations provide raob data for any give day.  
Therefore, 240 days were selected that 
correspond to about 2400 soundings, which 
where taken at 12:00 UTC.   



 

The Box-and-Whisker plot was used to 
identify the outliers in every variable for each 
pressure level.   The values exhibited by the 
whisker plot suggested the 0.2 percentile could 
be used as a threshold to eliminate the 
instrument or the man made errors.  Figure 2 
exhibits the Box-and-Whisker plot for the 
temperature at 100 mb, which indicates that 
there exist three assignable errors in the upper 
level and none in the lower level.  The 
assignable errors can be eliminated by selecting 
the 99.8 percentile in the upper level.  Therefore, 
the corresponding thresholds for these variables 
are: the maximum = –579 (tenths of Co) and the 
minimum = –890 (tenths of Co).   
 

 
 
Figure 1.  Location of Radiosonde Stations. 
 

 
 
Figure 2.  Threshold: Air Temperature at 100 mb 
 

Upper and lower threshold for each 
variable and for each pressure level were 

identified by means of the Box-and-Whisker plot 
and a matrix that contains the upper and lower 
levels was developed.  The quality control 
system consists of processing the raw data by 
the corresponding thresholds to identify and 
remove the assignable errors.  In addition, the 
quality control system removes data files that 
contain less than 50% of good data 

 
2  Horizontal Interpolation.   
 
Radisonde observations for a given day 

were organized and the Kriging algorithm was 
used to perform horizontal interpolation up to the 
required grid size.  This algorithm generates 
gridedd estimation for each variable at every 
pressure level (Bras, 1981; Federov, 1989).  The 
implementation of the Kriging algorithm can be 
summarized as follows.    

Let “A” be a set of known points 

 and each point is of 

the form ( , where  and  are the 

coordinates of the known point and is the 
corresponding variable value.  Let B be a set of 
unknown points
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where  is the distance from the known point 

 to the known point  and v  is 

the distance from the known point to the 

unknown point ( , and 
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jj yx λ is an additional 
parameter to be estimated from data.  
The Kriging algorithm was implemented to 
estimate the atmospheric variables in a grid of 
one degree at each mandatory pressure level.  
The Kriging algorithm generates 600 grid points 
for each atmospheric variable at each pressure 



 

level, and each estimate is further used to derive 
the vertical interpolation.  Estimation was 
performed at the studied area defined by 10°N 
to 30°N and 60°W to 90°W. 
 

2.3  Vertical interpolation.   
 
The gridded points generated by the 

Kriging algorithm were used to design a neural 
network model to perform a nonlinear vertical 
interpolation scheme.  A feedforward neural 
network model was selected to express the 
relationships among climatic variables estimated 
at eleven pressure levels.  Neural network 
models were chosen because successful 
applications have been reported in modeling 
highly nonlinear relationships among the 
variables of a dynamic system (Hesieh, 2001; 
Snell, 2000; Hagan et al., 1996; Ramirez-Beltran 
1999a, 1999b, 2000a, 2000b, 2002).  

Artificial neural network models were 
designed to express the relationships among the 
inputs and outputs of atmospheric dynamic 
systems. The first two modes of atmospheric 
variables from eleven mandatory pressure levels 
were used to train a neural network to obtain 
estimation at high resolution of the following 
atmospheric variables: geopotential height, air 
temperature, dew point, wind direction and wind 
speed.  Air temperature and dew point were 
further combined to estimate relative humidity.  
Wind direction and wind speed also were used 
to estimate the U and V wind components.  The 
designed scheme has the capability of 
estimating the mentioned atmospheric variables 
from the sea surface up to 17 km of elevation, 
(ie. from 1000 mb to 100 mb).  Five years of 
radiosonde observations and cross-validation 
techniques were used to assess the capabilities 
of the proposed estimation scheme. 

A feedforward neural network model is 
characterized by receiving input information to 
accomplish a modeling identification task without 
processing feedback information.  The training 
patterns are presented to the network model 
several times until eventually the algorithm 
determines the optimal weights and biases that 
minimize the deviation between the network 
outputs and the established targets.  The 
feedforward neural network model uses the 
backpropagation algorithm as the learning rule, 
which is based on the steepest descent 
algorithm.  The backpropagation algorithm 
requires much more effort than the steepest 
descent on computing derivatives since the 
backpropagation was designed to work with 

nested functions and consequently it demands 
the use of the chain rule to compute the partial 
derivatives included in the sensitivity of the 
network.  The errors are used to modify the 
searching direction and the gradient is computed 
at each layer starting from the last layer and 
finishing with the first layer, this is the reason for  
the backpropagation name.   

A biological neuron is represented by a 
mathematical model, which is called an artificial 
neuron (Hagan et al, 1996).  Usually, a set of 
interconnected artificial neurons is called a layer 
and a set of interconnected layers is a neural 
network model.  The number of neurons in the 
hidden layer was identified by maximizing the 
prediction capability of the neural network model 
and the best results were found with five 
neurons in the hidden layer.  The designed 
neural network has two layers and twenty-two 
neurons in the output layer since there are 22 
outputs variables. 

A neural network model was trained for 
every grid point to obtain simultaneously vertical 
interpolations for five variables.  A carefully 
selection of the input patterns is required to train 
a neural network.  The five-raob variables were 
organized as follows: 

[ ]ijijijijiji VDDPTHX =   τ,,1K=i   j L,,1 K=   (4) 

where Xi represents the upper-air information for 
the ith grid point. The variables Hij, Tij, DPij, Dij, 
Vij, represent geopotential height, air 
temperature, dew point, wind direction and wind 
speed, respectively, at the ith grid point and at 
the jth pressure level. L is the total number of 
pressure levels, and τ is the number of grid 
points in the studied area.   In order to reduce 
the number of input patterns the principal modes 
of the ith grid point were computed as follows: 

iii UXZ =         τ,,1K=i         (5) 
where Ui is the orthogonal matrix for the ith  grid 
point and its elements are the eigenvectors 
associated to the matrix  Xi.   

To accomplish the interpolation strategy 
the input patterns were selected and organized 
as follows: 

   [ ]iP=iP and   Ti= [ ]iZ~    τ,,1K=i      (6) 

Where Pi and Ti are the input and output 
patterns of the ith grid point.   is the pressure 

level associated to the i

iP
th  grid point and Zi

~
 

corresponds to the first two columns of Zi.  Pi is a 
vector of eleven elements and Ti is a vector with 



 

twenty-two elements.  A neural network model 
was trained using the Backpropagation (BP) and 
the Levenberg-Marquardt (LM) algorithm.  The 
LM algorithm improves significantly the 
performances of the BP algorithm (Hagan and 
Menhaj, 1994).  The main drawback of the LM is 
the large memory that is required.  This is one of 
the major reasons for training a ANN at each 
grid point. It should be noted that the neural 
network model identifies at each grid point a 
statistic model that correlate information from 
eleven pressure levels.  The neural network 
model estimates climatic variables with one 
degree of resolution at any pressure level that 
falls in the range: 1015 mb to 100 mb.  Figure 3 
exhibits the neural network modeling process. 
 

 
Figure 3.  Neural Network Modeling Process 
 
3.  RESULTS. 
  

Atmospheric estimates derived from this 
work were compared with data from the National 
Center for Environmental Prediction (NCEP) to 
test the veracity of our method.  Sixteen days 
were randomly selected from two dry and two 
wet months in 1995.  Estimations based on 
radiosonde observations were in agreement with 
NCEP data for the eleven mandatory pressure 
levels.  Figure 4 shows the estimates of wind 
speed at 200 mb on February 15, 1995 at 12 
UTC.  Figure 5 exhibits estimates of wind speed 
obtained solely on radiason data and using NN 
estimation.    Figure 5 exhibits comparisons of 
wind speed at 200 mb between NCEP and 
neural networks estimations.  These figure 
shows similar results, however, the there are 
some differences since NCEP is given at 
2.5x2.5 degrees on the horizontal, while neural 

networks estimates are given at 1x1 degree.  
This exercise indicates that . comprehensive 
estimates can be obtained by including NCEP 
data and radiosonde date to derive upper air 
estimates at any pressure level and at one 
degree of resolution.   

One of the major advantages of the 
ANN scheme is that additional information from 
local sounding and from . airplanes can be 
incorporated into the ANN algorithm to improve 
resolution of upper air variables.  A second 
advantage is the ANN can be used to perform 
short-term prediction of the upper air behavior. 
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Figure 4.  NCEP Estimates (wind speed 200 mb) 
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Figure 5.  NN Estimates (wind speed 200 mb) 



 

 
Hurricane Marilyn that occurs on 

September 1995 was used to illustrate one 
application of the ANN estimation scheme.  
Radiosonde and NCEP data were used to 
estimate upper air variables that were very close 
to the center of the storm.  A . 10 degrees 
square with the center located over the storm 
was estimated every six hours.   It has been 
shown that the dip layer is a better source than 
the individual layers to estimate the possible 
track of a hurricane. A dip layer was developed 
by using the weighs suggested by Neumann 
(1988)  Thus, a dip layer of geopotential height 
for U and V components were computed across 
the hurricane track.  Using the location of the 
storm as the origin, four quadrants were defined. 
Each quadrant has 25 grids and the first mode 
of the dip layer for each quadrant and for each 
variable was computed.  The displacement of 
the storm was developed every six hours on 
longitude and latitude.  It was studied whether or 
not there is any relationship between the first 
mode of the dip layers and the displacement of 
the storm.  

It was found that there is a strong 
correlation between the dip layer of geopotential 
height, and wind components with the 
displacement of the hurricane.  Figures 6 and 7 
show the model fitting between the longitude 
and latitude displacements, respectively.   
 

 
 
Figure 6.  Longitude displacement correlation. 
 
Figures 6 and 7 show in the horizontal axis time 
of the storm in hours and in the vertical axis the 
difference in Longitude (or Latitude) between 
two consecutives observations. The error in 
locating the center of the storm based on the 
moving gridded estimates can be determined by 
using the following equation  
 

 
 
Figure 7.  Latitude displacement correlation 
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where  is the distance between two points at 
time t,  the two points are defined by the 
observed and the estimated points. La

te

1,t, 
La2,t,are the observed and estimated latitude at 
time t, respectively.  Lo1,t, Lo2,t, are the observed 
and estimated longitude at time t, respectively 

The distances provided by equation (7) 
are given in nautical miles.  The estimated 
average error in locating the center of the storm 
was 18.55 Km.  It should be noted that the 
location of a hurricane can be predicted if the 
ANN scheme is able to predict the upper air in a 
short-term period. 
. 
4. DISCUSION AND CONCLUSIONS. 

 
The proposed methodology is a 

potential tool to mitigate the availability of very 
limited radiosonde information.  At a given point 
in time the number of weather stations that 
provide sounding information in the Caribbean is 
approximately 10.  We are planning to include 
NCEP data to improve our estimation scheme.    
In this preliminary work we did not exploit the 
use of satellite data.  It should be noted that with 
an additional computational effort the proposed 
methodology could be extended to predict 
atmospheric profiles including satellite data. 

One of the major contributions of this 
research effort is the design of a neural network  
algorithm to estimate climatic variables at any 
pressure level that falls in the range of 1050 mb 
to 100mb.  Preliminary results show evidence 
that the neural network models based on 
radiosonde observations and other sources of 



 

information are capable of estimating upper-air 
variables.  Comparing network predictions with 
real observations provides an assessment of the 
capability of the neural network.  It was noted 
that air temperature and dew point were 
predicted with high accuracy. The average 
absolute errors for those variables were 1.19 oC 
and 1.75 oC, respectively.  The average absolute 
error for geopotential height was 24.8 m, the 
wind speed average absolute error is in the 
range of 2.55 m/s whereas the wind direction 
average absolute error was 45 degrees.  In 
summary, prediction errors are small enough to 
indicate that the proposed methodology provides 
satisfactory results.  It should be noted that 
relative humidity could also be predicted based 
on air temperature and dew point predictions. 
Therefore, the proposed neural network 
approach is a potential tool to develop the 
atmospheric boundary conditions for a regional 
numerical model. 

The future work of this research would 
be to develop a short-time prediction scheme 
The prediction scheme will provide the 
possibility of predicting the hurricane tracks and 
hurricane intensity. 
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