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ABSTRACT
In order to retrieve the atmospheric ozone distribution from the UV-visible satellite spectrometer GOME
(Global Ozone Monitoring Experiment), we have modelled inverse radiative transfer directly, using a multi-
layer perceptron (MLP) type neural network. This network was trained on a data set of measured GOME
radiances as input, and collocated ozone profile measurements from ozonesondes, SAGE II, HALOE and
POAM III as target values. A partial training method has been devised for dealing with incomplete tar-
get data, because neither occultation instruments nor ozone sondes cover the full retrieval height range
(1–60 km). Around 70000 collocations from 1996 to 2001 were used for training, and another 12000 for
cross-validation in a test data set. Network input consists of a combination of spectral, geolocation and
climatological information (latitude and time), the latter making the use of external a priori ozone profiles
unnecessary. We designate our method as Neural Network Ozone Retrieval System (NNORSY). In the
stratosphere, NNORSY globally reduces standard deviation (StD) with respect to a well-tried ozone climatol-
ogy by around 40%. Tropospheric ozone can also be retrieved in many cases, reducing the StD by 10-30%
globally. The neural network was found capable of correcting for instrument degradation, pixel cloudiness
and scan angle effects on its own, based on the input data provided. Remaining inhomogeneities in the ge-
ographical distribution of training data, combined with differing ozone field variability causes retrieval quality
to vary with latitude and season. Since retrieval only requires one forward propagation through the network,
NNORSY is about 103–105 times faster than classical, local retrieval techniques like, for instance, Optimal
Estimation. Therefore the method is well suited for real-time application and fast data reprocessing. An
operational near-real-time prototype of the system is already running successfully at three GOME receiving
stations. In order to better characterize single output ozone profiles, a number of local error estimation
methods has been investigated. Vertical resolution of the profiles was assessed empirically in compar-
isons with the high-resolution collocations, and seems to be in the order of 4–6 km. Further developments
of NNORSY could involve improvement of training data composition, input parameter optimization, more
sophisticated network error functions and training methods, as well as adaptation to other sensors.

1. INTRODUCTION

Although it contributes only about one millionth to
the total mass of the atmosphere, the trace gas
ozone is one of its most active and important con-
stituents. Not only does it prevent harmful UV ra-
diation from reaching the ground, but it controls the
stratospheric temperature distribution, and shares
responsibility for summer smog, the oxidation ca-
pacity of the atmosphere and global warming. De-
termining the three-dimensional, global distribution
of ozone from the orbit has been a challenge to
which a number of different satellite instruments
have been assigned in the past. One of these is
the Global Ozone Monitoring Experiment (GOME)
(Burrows et al., 1999) upon the European polar or-
biting satellite ERS-2. It measures the backscat-
tered solar radiation from 240 nm to 790 nm at a
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moderate spectral resolution (0.2–0.4 nm). GOME
is a scaled-down version of the SCIAMACHY instru-
ment (SCanning Imaging Absorption spectroMeter
for Atmospheric CHartographY ) (Burrows et al.,
1995; Bovesmann et al., 1999), which was recently
put into operation on the European ENVISAT satel-
lite.

To exploit the theoretical ozone information con-
tent of the backscattered UV-vis radiation, a non-
linear, ill-posed inverse retrieval problem has to be
solved for the sun-normalized GOME radiances.
To achieve this, various independent retrieval algo-
rithms have been developed, most of which based
on the principle of Optimal Estimation (OE) as de-
scribed by Rodgers (1976, 1990). Simply put, this
method tries to find an optimal compromise be-
tween information gained from a spectral measure-
ment and an a priori ozone profile. The compromise
is based on the reliability of either source, i. e. their
error characteristics.

Athough this retrieval scheme can be considered
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geophysical, since it relies on the relatively well un-
derstood forward calculation of the radiative transfer
equation (RTE) used for extracting spectral informa-
tion, it also possesses a significant statistical com-
ponent in the form of the optimization framework.
In addition, solving the RTE requires certain as-
sumptions about unmeasurable or unavailable pa-
rameters of the state of the atmosphere and the in-
strument. Also, the a priori ozone profile together
with its variance is usually taken from a climatol-
ogy, which also consists of a statistical and empiri-
cal analysis of a number of measurements.

This paper proposes to let a neural network
scheme take care of the heuristics and statistics
of the retrieval process, after being provided with
a suitable structure and training data set derived
from geophysical knowledge and a few assump-
tions. Such has been done successfully in other
fields of atmospheric science (Krasnopolsky, 1997;
Chevallier et al., 1998; Jiménez, 2000; Aires et al.,
2001) with the network tool of choice being a nonlin-
ear feed-forward neural network, also called a mul-
tilayer perceptron (MLP) (Rumelhart et al., 1986).
Based upon experience in MLP ozone retrieval from
NOAA-TOVS data (Müller and Kaifel, 1999; Kaifel
and Müller, 2001), the method has now been ap-
plied to GOME data and will be designated in what
follows as Neural Network Ozone Retrieval System
(NNORSY). The motivation behind its development
is therefore, that it will complement existing retrieval
algorithms by exhibiting different problems and er-
ror characteristics, and – even more importantly –
that it is faster by several orders of magnitude.

Section 2 of this paper will give a brief overview
of the neural networks’ relationship to the well-
established OE theory, and describe the specific
data and training methods needed for retrieval of
ozone profiles from GOME. Section 3 presents the
retrieval results in the form of error statistics on
the training and test data sets, as well as subsets
thereof. A brief case study with validation data from
Hohenpeissenberg ozone sondes is also included.
Section 4 will then elaborate on the advanced top-
ics of estimating local retrieval errors and vertical
resolution, while Section 5 will conclude the paper.

2. DATA AND METHODS

2.1. MLPs in the Retrieval Context

The idea of retrieving height-resolved ozone infor-
mation with an orbital instrument by measuring the

backscattered UV (BUV) radiation dates back to the
1950’s (Singer and Wentworth, 1957) and will be
briefly described here. While theoretically possi-
ble for other trace gases as well (Rozanov et al.,
1993), ozone is particularly suited for this task,
because its absorption coefficient rises steeply by
about four orders of magnitude in the UV. This alone
for solar radiation would already lead to decreas-
ing penetration depth in the atmosphere, but the
effect is greatly enhanced by Rayleigh-scattering
and increasing air pressure. As a result, incom-
ing radiation observes an almost transparent atmo-
sphere down to a certain depth, at which extinction
rises rapidly within a few kilometers. The height of
this layer depends on wavelength; it almost acts
like a fuzzy mirror, with the reflected photons car-
rying ozone information mostly from the particu-
lar height region. By scanning the UV, a height-
resolved ozone profile can thus be constructed.

From radiative transfer theory, it can be shown
(e.g. Rodgers, 1990) that the top-of-atmosphere ra-
diance y(λ) measured by a satellite is essentially a
weighted integral over the atmospheric state x(z)

y(λ) =
∫ ∞

z=0
K(z,λ)x(z)dz, (1)

where z is the height coordinate, λ the wave-
length and K(z,λ) the weighting function or kernel
of the observation process, which decribes the alti-
tude and fuzziness of the abovementioned ’mirror’.
For discrete measurements, Eq. 1 is discretized in
such a way that x = (x1,x2, . . . ,xn)T is a vector in
n-dimensional state space, and y = (y1,y2, . . . ,ym)T

belongs to the m-dimensional measurement space.
In retrieval theory, it is furthermore assumed for
physical reasons that the relationship between x
and y can be modeled as

y = F(x,b)+ ε, (2)

where F is a (radiative transfer) forward model
depending on the atmospheric state x and a num-
ber of additional parameters which are for simplic-
ity combined into one vector b. The measurement
noise vector ε is assumed to have Gaussian statis-
tics. In general, the model F will not be linear, but
since it represents a continuous function, it can be
linearized in the vicinity of a certain state x0, such
that

y−F(x0) =
∂F
∂x

∣∣x0(x−x0)+O(x2)≈ K(x−x0), (3)
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where K = ∂F
∂x is called the kernel matrix. How-

ever, the underlying Eq. 1 belongs to the class of
Fredholm integrals of the first kind, a class contain-
ing many ill-posed problems, of which the inverse
retrieval problem is no exception. For a compre-
hensive discussion on this topic, the reader is re-
ferred to (Rodgers, 2000). It shall just be stated
here that the rank of K is usually smaller than the
state space dimension n, therefore the problem is
underconstrained, meaning there exist a multitude
of possible solutions x for any given observation
y. It is therefore reasonable to look at the prob-
lem from a Bayesian point of view: The most prob-
able solution x̂ is the one that maximizes the like-
lihood L = p(x|y), with p(x|y) denoting the condi-
tional probability density of x given the observation
y. This is equivalent to minimizing an error function

E = − lnL =− ln p(x|y) =− ln

(
p(y|x)p(x)

p(y)

)
= (y−Kx)TS−1

e (y−Kx)+
+(x−xa)TS−1

a (x−xa)+const., (4)

where Bayes’ Theorem was used in the first line
and the assumption of Gaussian errors in the sec-
ond. p(y) is assumed to be constant. The covari-
ance matrix Se contains forward model and mea-
surement errors, while Sa tries to model the natu-
ral variability of the state, centered around some a
priori xa, which in practice mostly represents a cli-
matological mean, i. e. xa = xa(θ,d) with θ denoting
geographical latitude and d the time of year. Eq. 4
constitutes the core of the OE framework (Rodgers,
1976, 2000). As can be seen, it applies for a single
observation y, and requires the knowledge of a for-
ward model, its error covariance, the measurement
error covariance, an a priori state and an a priori
covariance.

Since we assumed Gaussian distribution for all
errors involved, it follows that p(x|y) is also a Gaus-
sian. This function can be sampled using a set
of observations {yp}, p∈ {1, . . . ,P}, for which the
corresponding states xp are known. We further as-
sume the existence of an inverse function R mod-
elled by

x = R(y,c,w)+ εR, (5)

where c is a vector of additional input parame-
ters, and w contains the inverse model parameters.
Omitting the constant terms, the error function can
then be written as

E =− ln
P

∏
p=1

p(xp|yp) =

=
P

∑
p=1

(R(yp,cp,w)−xp)T Ŝ−1(R(yp,cp,w)−xp)2 (6)

In our case, R is realized by means of a simulated
MLP-type neural network. This network consists
of a one-dimensional input layer containing enough
neurons to receive the input y and c. Each input
neuron is connected to all nodes of a second, hid-
den layer of neurons via synapses carrying weights
w. When presented with an input data vector, the
input signals propagate along the synapses whilst
being multiplied by the weights. The hidden neu-
rons essentially sum up all incoming signals, and
use a fixed nonlinear function – in our case tanh
– to in turn define their outputs, which propagate
through another layer of weighted synapses to the
output neurons. These neurons again sum up their
inputs, and use another tanh transfer function and a
suitable renormalization to define the network out-
put x. Thus, the network is essentially a mapping
from measurement space to state space parame-
terized by means of the weights w.

In principle, more than one hidden layer of neu-
rons could be used, but is has been proven that
one layer is enough to make the network model a
universal approximator, i. e. it can theoretically ap-
proximate any given mapping with arbitrary accu-
racy (Hornik et al., 1989). However, this proof is
not a constructive one, therefore the hidden layer
size has to be determined empirically (Tamura and
Tateishi, 1997), and the optimal set of weights w is
searched for with a learning algorithm, the choice
of which will be described in Section 2.3.. In con-
trast to conventional approximation schemes with
fixed basis functions (e. g. polynoms, trigonometic
functions, etc.), where the approximation error in-
creases exponentially with the dimension of the
mapping, in approximation tasks carried out by
means of neural networks the error was shown
to be independent of the dimension (Baron, 1993,
1994).

At this point, we should note the fundamental dif-
ferences between OE and the neural network ap-
proach: While the first term in Eq. 4 represents a
distance in measurement space, Eq. 6 corresponds
entirely to state space. Also, the neural network
method doesn’t demand explicit knowledge of a for-
ward model or an a priori, but instead it needs a
training data set of paired observations and mea-
surements {(yp,cp),xp}, from which it estimates an
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optimal set of parameters w. Once this is done, the
resulting mapping R is optimal in a global sense,
and can be applied to all observations, whereas OE
determines a new, locally optimal solution for each
individual observation. The consequences of these
differences will be discussed further below.

In practice, Eq. 6 is often simplified for computa-
tional reasons by assuming Ŝ= σ2In for all training
pairs.∗ It then doesn’t influence the minimization of
E anymore, therefore it can be safely omitted, which
leads to the well-established quadratic error func-
tion of the form

E =
1
2

P

∑
p=1

(R(yp,cp,w)−xp)2 =:
P

∑
p=1

Ep, (7)

where the factor 1
2 is just a convention, and Ep is

the error attributed to a single output pattern. This
rather coarse assumption is still adequate for ozone
retrieval purposes, as will be demonstrated below.
However, the description of retrieval error through a
single standard deviation σ is unsatisfactory in most
cases, thus supplementary methods have to be em-
ployed to better characterize the errors (Sec. 4).

Since the ill-posedness of the inverse retrieval
problem leads to very unstable solutions with
a straightforward, classical approach (Hasekamp
et al., 1999; Rodgers, 2000), the second term in
Eq. 4 serves as a regularizer. Another way to look
a this is by means of the a priori, the OE algorithm
is drawn toward a physically reasonable solution of
Eq. 1, while purely mathematical ones (e. g. involv-
ing negative ozone densities), and climatologically
improbable ones are being made unattractive. On
the other hand, neural networks with quadratic error
functions always approximate the conditional mean
of the training data with respect to the input Bishop
(1995a). In the case of ambiguities, this may lead to
bad results, since for instance the mean of two valid
branches of a solution is not necessarily itself a so-
lution – it may well lie on neither branch. However
it can be argued that since OE yields unambiguous
results, the parameters b used in the forward model,
in addition to θ and d from the a priori serve to re-
move the ambiguities. Here, these parameters are
combined into the vector c, and are thus included
in the neural network input to render the network
mapping unambiguous.

∗Suitable normalization of y within the preprocessing step en-
sures that the output variances are all in the same order of mag-
nitude.

2.2. Training Dataset Assembly

The NNORSY method relies on collocations with
measured ozone profiles from different sources to
form the training and test databases. NNORSY was
trained on collocations dated from Jan. 1996 to July
2001. The maximum distance for collocations was
set to 250 km, with no more than 12 h between
ozone and GOME measurements. All data thus col-
lected were interpolated to a common height grid
stating average ozone number densities at 1, 2, . . .,
60 km geopotential height (GPH).

Ozonesonde data were obtained from the
World Ozone and Ultraviolet Radiation Data Cen-
ter (WOUDC) (Wardle et al., 1998) and from
the Southern Hemisphere Additional Ozoneson-
des (SHADOZ) campaign (Thompson et al., 2001).
These data generally have a high quality and ver-
tical resolution, but their geographical distribution
is uneven, with most stations situated at northern
midlatitudes and very few measurements over the
oceans. Since sonde data starts becoming unre-
liable around 25–30 km (SPARC, 1998), all sonde
profiles were cut off at a random height in this range.
Cutting off all sondes at the same height resulted
in artifacs in the retrieved profiles and was there-
fore avoided. To achieve coverage of the greater
heights, the sonde measurements were supple-
mented by satellite data from solar occultation limb
sounders. These were the infrared HALOE instru-
ment (Russell et al., 1993), data version 19 (Lu
et al., 1997), the ultraviolet SAGE II sensor (Cun-
nold et al., 1989), v6.10 (Cunnold et al., 2000), and
the POAM III sensor, v3 (Lucke et al., 1999; Lumpe
et al., 2002). HALOE and SAGE II sample the entire
globe quite evenly between 70◦S and 70◦N, while
the POAM measurement geometry results in sun-
rise events occurring between 54◦N and 71◦N, and
sunset between 63◦S and 88◦S. Note that some-
times multiple GOME pixels were collocated with a
single ozone profile. This is equivalent to training
with noisy input data, and serves to further regular-
ize the retrieval (Bishop, 1995b).

As has been found elsewhere (Lu et al., 1997;
Steele and Turco, 1997; Deniel et al., 1997; SPARC,
1998), the aforementioned ozone data sources do
not always agree. The neural network will con-
struct a compromise between the different sources,
therefore biases stemming from different measure-
ment principles and retrieval algorithms for the limb
sounders are likely to cancel out. Yet it is clear that
strong biases and variances in the training data set
will adversely affect NNORSY retrieval accuracy,
therefore some homogenization based on the sta-
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tistical properties of the training data set was per-
formed. Since both the distribution of collocations
and of ozone in general are largely governed by lat-
itude, the statistics of latitude bands were used for
this purpose.

First, the number of collocations over latitude and
time had to be checked, for overrepresentation of
a certain latitude region might lead to biases in the
neural network output, by favoring a certain type of
profile (Bishop, 1995a). On the other hand, it is
reasonable to include more profiles from latitudes
where natural ozone variability is higher – e. g. the
fringe of the polar vortex and the northern midlat-
itudes – such that a greater number of different
atmospheric situations is sampled. The availabil-
ity of data over time should be mostly level, other-
wise ozone trends and sensor degradation cannot
be accurately modelled. Removal of profiles is done
by selectively reducing the allowed maximum collo-
cation distance for ground stations, times, and/or
latitude bands. The 2-dimensional homogeniza-
tion over latitude and time sometimes requires sub-
optimal compromises to be made. Fig. 1 shows his-
tograms of observation density for NNORSY train-
ing data before and after the operation.

It is clearly seen in Fig. 1, that the highest density
of collocations is located around 50◦– 60◦N. POAM
data in the NH have therefore been used only pole-
ward of 65◦N, to extend data coverage towards the
pole, because SAGE and HALOE measurements
become sparse in this region. Being of very good
quality (Lucke et al., 1999), the withheld POAM data
from 54◦– 65◦N can later be used for validation pur-
poses.

In a second step, the remaining collocations are
checked for consistency and submitted to a heuris-
tic screening procedure to remove outliers. Special
care has to be taken regarding occultation sounder
data below the lowermost stratosphere, because
tropospheric aerosols and clouds tend to interfere
with their retrieval algorithms and are not always
correctly accounted for in the error specifications
accompanying the ozone products (Bhatt et al.,
1999; Steele and Turco, 1997; SPARC, 1998).

The GOME data used for profile retrieval were
processed with the standard GOME Data Proces-
sor (GDP), Version 2.1 (Slijkhuis and Loyola, 1999;
Bargen et al., 1999), including all standard cor-
rections (straylight, polarization, etc.) except from
degradation, which the program applies equally to
solar and earth spectra. Thus it cancels out when
calculating sun-normalized radiances. Before nor-
malization, all spectra have to be interpolated to a

common wavelength grid, since the neural network
does not get any wavelength information and there-
fore assumes each spectral input neuron has a fixed
location in wavelength space.

The spectral channels of the GOME instrument
and their characteristics are given in Table 1.
GOME measures three forward pixels across its
track, followed by a single backscan pixel, which
is not used here. Apart from that, all valid GOME
pixels regardless of cloudiness and ground condi-
tion were retained. The GOME forward pixel size of
160 x 40 km2 being rather large already, retrievals
were performed using the full horizontal resolution.
This required assigning the same GOME channel
1A spectra to clusters of six forward pixels, since
the channel is integrated for a longer timespan to in-
crease the S/N ratio. The channel boundary switch
in mid-1998 was found to have no impact on the
retrieval with NNORSY, any effects of this are obvi-
ously compensated for by the network.

2.3. Network Training Considerations

The neural network used for the retrievals has 122
input, 45 hidden and 60 output neurons. Table 2
shows the configuration of the neural network input
layer. GOME sun-normalized radiance values are
mainly taken from the ozone Hartley- and Huggins-
bands, where the absorption coefficient’s temper-
ature dependence provides height-resolved ozone
information (Chance et al., 1997). The spectral
resolution has been decreased to 0.35–1.5 nm by
coadding of 4–12 wavelengths, in order to reduce
random noise and the number of free parameters
(weights) in the network. Since it was seen else-
where that the ozone Chappuis band can under cer-
tain conditions improve retrieval results in the tropo-
sphere (de Beek, 1998), some radiances from that
band were also included. Additional spectral val-
ues provide information on cloud cover and ground
albedo. It should be noted that due to the flexibility
of neural networks, the method is not very sensitive
towards the selection and resolution of wavelength
windows, as long as they contain enough physical
information altogether. This was found in a num-
ber of sensitivity studies (Müller, 2002) which will
not be discussed here. Suffice to say that omitting
all spectral information, i. e. training climatological
networks, increases retrieval errors by over 40% in
the stratosphere and above, and by 5–40% in the
troposphere (Fig. 2). Therefore, it is clear that the
neural network model can indeed be used to ex-
tract considerable height-resolved information from
the GOME spectra provided.
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Figure 1: Training data distribution by latitude and time, before and after the data set homogenization
procedure was applied.

Channel Wavelenghts λ [nm] # of photodiodes δλ [nm] tI [s] SNR
1A 238–283 (307) 400 (625) 0.2 12 10–434
1B (307) 283–314 295 (70) 0.2 1.5 434–841
2 311–404 841 0.2 1.5 849–5100
3 394–611 1024 0.4 1.5 3500–4200
4 578–790 1024 0.4 1.5 3239–4214

Table 1: GOME spectral channels and characteristics. δλ is the spectral resolution, tI the integration time,
SNR the signal-to-noise ratio, from (Eichmann, 2001). Numbers in brackets were valid before a channel
shift on 7th June 1998.

As mentioned in Section 2.1., apart from the
spectral measurements a number of geophysical
parameters are provided to the network. These in-
clude solar and satellite zenith angles and the scan
angle, as well as three separate flags to account
for the pixel type (east, nadir, west). Fig. 2 in-
fers that latitude and season allow the implicit con-
struction of some sort of climatology. The contin-
uous in-orbit time provides a means to correct for
time-dependent sensor degradation effects to a cer-
tain extend. The UKMO temperature profile was
provided because of its strong correlation to atmo-
spheric ozone.

Training algorithm selection for MLPs has be-
come a fairly wide field, although many new algo-
rithms are still based on the principle of backpropa-
gation as described by Rumelhart et al. (1986). The
relative inefficiency of the original algorithm makes
it unsuitable for dealing with the vast amount of data
present in satellite meteorology, therefore several
alternative learning algorithms have been surveyed
in the frame of this and previous projects (Kaifel

and Müller, 2001). For the given case, the Re-
silient Propagation algorithm (RPROP) developed
by Riedmiller and Braun (1993) has been found ad-
vantageous. In RPROP, the magnitude of weight
changes does not depend on the derivative of the
error function E, as in backpropagation. Instead,
each weight wi j is associated with its own weight
step ∆i j . These weight steps are modified accord-
ing to a one-step history of sign changes in the error
function derivative. Roughly speaking, the RPROP
algorithm accelerates weight adjustment as long
as the network is moving towards a minimum, but
stops abruptly when stepping over a minimum, and
subsequently tries to approach it by interval divi-
sion. This behaviour was observed to lead to fast
and very stable error decreases during training on
the data sets provided here (Müller et al., 2001,
2002).

As we mentioned before, a specific problem of
training with measured ozone profiles instead of
simulations is the incompleteness of the target
data. Ozonesondes were used only in a height
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Input parameter # of neurons Purpose
270–325 nm 74 O3 Hartley/Huggins band
380–385 nm 13 atmospheric window
598–603 nm 6 O3 Chappuis band
758–772 nm 9 O2 band: cloud detection
Satellite & solar zenith angles 4 slant column correction
line-of-sight flags 3 slant column correction
Latitude & season 2 ozone climatology background
In-orbit time 1 instrument degradation correct.
UKMO T-profile 10 atmospheric state info

Table 2: Neural network input parameters for ozone profile retrievals. The wavelength ranges refer to sun-
normalized and logarithmized radiances measured by the GOME instrument.

Figure 2: Comparison of observed test data set er-
rors for climatological networks, i. e. ones without
GOME spectral input data. The reference run used
the configuration from Tab. 2, but without T-profile,
to clarify the impact of spectral information. F&K
refers to using the ozone climatology from (Fortuin
and Kelder, 1998) instead of NNORSY retrievals.

range reaching up to 30 km, while data from limb-
sounding satellite instruments become unreliable
below 10–20 km (SPARC, 1998). These different
measurements do not normally coincide in space
and time, and hence cannot just be joined together.
Therefore, for each target profile t p = (t p

1, t
p
2, . . . , t

p
n)

T ,
data were either flagged as missing (mp

k = 0) or as
available (mp

k = 1). With op = R(yp,cp,w) being the
network output, the pattern output error calculation
(cf. Eq. 7) was modified according to

Ep =
1
2

(
n

∑
k=1

mp
k

)−1 n

∑
k=1

(t p
k −op

k)
2 ·mp

k. (8)

This way, only available data contribute to the
weight adjustment. Note that this modification does
not noticably change the well-behavedness of the
RPROP algorithm, as has been shown in (Müller
et al., 2002).

3. RETRIEVAL ERROR STATISTICS

3.1. Global Error Statistics

The standard method for evaluating the quality of
neural network output is to assess the error statis-
tics on a test collocation data set independent of
the training data. This is already being done during
training, which is considered completed once the
test data set error decreases slower than a given
threshold rate. In this sense, the test data set is
not completely independent of the training results in
that it determines the best configuration to use and
when to stop training (Plutovski, 1996). However,
it turns out that for the kind of problem faced here,
statistics do not chance significantly when using a
full-sized third, truly independent evaluation data
set for validation purposes only. Since good col-
locations are a valuable asset, the validation data
was composed solely of collocations with ozonson-
des from Hohenpeissenberg (47.8◦N, 11.0◦E) and
Syowa (69.0◦S, 39.6◦E). However, care has been
taken to prevent any ozone profiles from appearing
in both training and test data, which can happen
with multiple collocations and might disrupt statis-
tical independence. The test data set constructed
consists of 12281 collocations with a distribution
similar to the training data (70048 colloc.).
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Figure 3 shows the global error statistics for both
training and test data. With dp = op− t p, and d̄ being
the average of d of the entire data set, note that
relative standard deviation is defined as

s=
∑P

p

√
1

P−1(dp
k−k)2

1
P ∑P

p t p
k

, (9)

not as
√

1
T−1 ∑(dp− d̄)2/tp. Since we do not use av-

eraging kernels or other smoothing methods, sonde
profiles used in the collocations were only inte-
grated to 1 km layers. Retrieval vertical resolution
is probably considerably lower (cf. Sec. 4.2.). This
would give rise to extreme relative errors due to un-
resolved fine structure whenever the latter calcula-
tion method is applied.

σ σ

σ

µ

Figure 3: Global relative statistics of NNORSY
ozone profile retrievals compared to training and
test data set collocations. σ denotes standard de-
viation, whereby σC is calculated by using profiles
from the Fortuin and Kelder (1998) climatology in-
stead of retrievals.

As can be seen in Fig. 3, there is almost nonex-
istent bias between the collocations and NNORSY
output. This is a property of the quadratic neu-
ral network error function (Bishop, 1995a), and
shows the importance of constructing a represen-
tative training data set. Overall, NNORSY-GOME
reduces the standard deviation of the monthly mean
Fortuin and Kelder climatology (Fortuin and Kelder,
1998, referred to as F&K in the following) with re-
spect to the collocated sonde and limb-sounder
data by around 20–45%, depending on height.

Test data set errors are only marginally higher
than the ones from the training data, which is a
sign of the good generalization ability of the net-
work. When further training is carried out, we ob-
serve slight improvements above the ozone peak,
but the network starts overfitting the sonde data,
which leads to higher test data errors in the tropo-
sphere. We are still investigating the optimal stop-
ping point for training, and whether the results can
be further improved by trimming the number of val-
ues per height level and/or by combining the output
of several different or differently trained networks.

Some other features which can be recognized in
the figure are the sharp peak in the relative error
around 9 km GPH. Since the retrievals still reduce
standard deviation wrt. the climatology, it can be
concluded that this peak is mostly due to the high
temporal and spatial variability of ozone in this layer,
which also cannot be captured in monthly means.
The errors in the lower troposphere are also sur-
prisingly low, considering the fact that gaining ozone
information from GOME data in this height range
is severely limited by clouds and the low S/N ra-
tio (Hoogen et al., 1999). However, the collocated
tropospheric ozone profiles are only representative
for the station locations, which means there is not
much information on the errors e. g over the oceanic
troposphere contained in the training and test data.
There are hints that the system systematically un-
derestimates tropospheric ozone on a global scale,
but this is still under investigation.

3.2. Sensitivity Analyses

Sensitivity studies can performed by dividing the
test data set into subsets according to input pa-
rameter values. Of these, the latitudinal depen-
dency of the errors will be discussed below. No
significant dependency on pixel line-of-sight (LOS)
was detected, therefore we conclude that the net-
work is well capable of correcting for scan angle ef-
fects. With time, the errors do not follow a significant
trend, although in the stratosphere errors for 2001
tend to be slightly higher than in the previous years.
This can be explained in part by the underrepresen-
tation of training data from 2001, and will be further
looked at in a case study (Sec. 3.3.).

Figure 4 displays the relative statistics for the test
data set divided into latitude strips. The variations
observed result from a combination of the latitudinal
changes of ozone natural variability with the latitudi-
nally uneven distribution of training data (especially
ozonesonde data). For instance, in the southern-
most strip 1245 of the 1704 collocations stem from
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Figure 4: Same as Fig. 3, but only test data set, divided into different latitude strips.

the limb sounders, which obviously contribute con-
siderable knowledge in the stratosphere, but sonde
data are rare, therefore the standard deviation in the
troposphere is fairly high. It is clear that the training
algorithm yields lower errors in regions were data
are abundant, because it receives more error feed-
back from these areas. The generally large solar
zenith angles (SZAs) in the Antarctic region also
contribute to the retrieval problems.

In the north polar region there is ample
ozonesonde data (49%), but no satellite data north
of 71◦N. Thus, the network has enough data
to learn a suitable SZA correction for the lower
heights, but the relatively low errors above 20 km
are somewhat misleading, since they can only be
computed from satellite profiles southward of 71◦N.
Therefore errors closer to the pole might be some-
what higher, but cannot be estimated from the test
data.

In the tropics, the climatology obviously repro-
duces the ozone concentration above 20 km rather
well, with NNORSY yielding a less significant re-
duction in standard deviation. This is a result of the
low ozone variability in this part of the atmosphere,
where ozone distribution is mostly governed by pho-
tolytic ozone production, not by short-term transport
and chemistry processes. We also note a low bias
of up to 20% in the region around 12 km, the rea-
son of which is not completely understood. A com-
bination of different effects are suspected to con-
tribute, like frequent cloud occurrence, fewer num-
ber of collocations, and model errors resulting from
the distincively non-Gaussian distribution of target
values at these heights. However, due to the low
ozone molecule number density in the tropical tro-
posphere, in absolute terms this bias amounts to
only ∼ 0.1· 1018 m−3, and is thus easily offset glob-
ally, with the average extratropical ozone number
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density at 12 km ranging around 2· 1018 m−3.

3.3. Ozonesonde Case Study

Fig. 5 depicts the timeline of both NNORSY and Ho-
henpeissenberg ozone sondes. For this compari-
son, layers of 10 km GPH thickness have been cal-
culated to reduce errors resulting from the different
vertical resolution of the ozone profiles.

The timeline plots reveal a good agreement of
NNORSY with the sondes in all height ranges, but
especially between 10 and 20 km. Note that for
these plots, all GOME collocations within 250 km
of a given ozonesonde were averaged into a sin-
gle profile. As expected, largest deviations arise in
Spring, where there temporal and spatial variabil-
ity of ozone in the northern midlatitudes is high.
There is however no significant bias or drift of the
NNORSY partial columns with respect to the son-
des, even after beginning of the year 2001, when
the ERS-2 satellite was switched to gyroless mode
and the operational GOME Level 1 data started de-
veloping a number of problems (Aben et al., 2000).
It seems the neural network is sophisticated enough
to implement a correction for radiance data degra-
dation effects based on the input data. However, it
must be noted that on a test dataset average, the
errors increase slightly after January 2000, so the
correction is by no means perfect. The F&K clima-
tology, also shown in the figure, cannot reproduce
the short term changes in the ozone columns, and
seems to be somewhat biased to higher values in
the 20 to 30 km height range, which might hint at
noticable ozone losses in this height range (Reid
et al., 2000), since the climatology is compiled from
data in the time frame 1980–1991.

4. PROFILE CHARACTERIZATION

In Section 2.1., it was shown that the neural net-
work method is based on a quadratic error function,
giving rise to a single standard deviation parame-
ter, which is unsatisfactory in most cases. Instead,
the test data set statistics presented in the previ-
ous sections may in principle be used as a crude
accuracy estimate for the ozone profiles. They en-
compass GOME spectral measurement noise, col-
location errors, smoothing errors, and biases be-
tween the different collocated profiles. The uncer-
tainties of collocated target profiles exhibit their in-
fluence in two different ways: In the training data,
they serve as a noise source and help regularize
the retrieval system during the training phase, while

in the test data they add directly to the observed
error statistics. Not included in these statistics are
errors due to the spatial and temporal distribution of
training data, i. e. errors connected to the represen-
tativeness of the training collocations. These come
into play especially in places where collocations are
sparse, at the north pole for instance, and over the
southern hemisphere oceanic troposphere.

4.1. Local Error Estimation

On the other hand, a precision estimate for individ-
ual retrieved profiles would be desirable for a num-
ber of applications. In a classical system, these es-
timates can be achieved by calculating the Jacobian
of the inversion,

Dy =
∂x
∂y

, (10)

and propagating the input data errors according
to

SD = Dy
TSyDy. (11)

Here, Sy is the measurement error covariance
matrix, and SD the retrieval error covariance matrix.
In our case, the diagonal elements of SD yield vari-
ance estimates for each profile height level. Usu-
ally, the input noise is assumed to be uncorrelated,
hence Sy is diagonal and the profile errors effec-
tively result from a quadratic propagation of the in-
put errors using Gauss’ error propagation rule.

Although the NNORSY Jacobian can be easily
calculated (Bishop, 1995a; Aires et al., 2001), the
above procedure seems to grossly overestimate the
observed errors, leading to values of several thou-
sand percent in some instances. Looking at the Ja-
cobian column vectors – the so-called contribution
functions (Rodgers, 2000) – which each describe
the reaction of the output profile to a change of one
input parameter, reveals very similar patterns be-
tween neighboring spectral values, sometimes with
opposing sign. It would thus seem that the net-
work determines the output largely from groups of
input parameters, thereby cancelling their errors in
a nonlinear, sophisticated way which cannot be re-
produced by the linear approximations in Eq. 11.
These findings are generally in line with what Aires
et al. (2001) report on the nonlinear properties of
retrieval networks.

Alternative local error estimation methods for
neural networks have been extensively investigated
in current literature (e. g. Papadopoulos et al., 2001,
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Figure 5: Timeline of partial ozone columns from NNORSY (�) and collocated Hohenpeissenberg (47.8◦N,
11.0◦E) ozone sondes (+). Multiple collocations within 160 km were averaged into single points. The F&K
climatology is plotted for comparison as a dashed curve.

and references therein), but most applications deal
with fairly small data sets, for which an enhanced
network can be constructed to approximate pa-
rameters of the output probability density (Bishop,
1995a). These methods commonly involve massive
increases in the number of output neurons, which in
our case would unbalance network size and training
data set size.

Thus, two other alternatives have been investi-
gated. One of them is a brute force approach, in
which the retrieval is repeated M times while the
input data is disturbed using realistic assumptions
about measurement noise. The standard deviation
σ̃ can then be calculated as

σ̃k =

√
1

M−1

M

∑
m=1

(dm,k− d̄k)2, where (12)

dm = om−ot (13)

is the difference between disturbed profile om and
the undisturbed profile ot . Of course, this slows
down the retrieval calculation by the factor M, but
this is still acceptable – one retrieval with errors can

be calculated in less than one second on a 400 MHz
UltraSPARC2 processor. This method results in
some kind of precision estimate. In the experiments
conducted thus far, error covariances in the input
data are not taken into account, and the assump-
tions about spectral measurement noise are greatly
simplified, adding to the uncertainty of the method.
As a worst case scenario, we used 10% noise for
GOME Channel 1a, 5% for Ch. 1b, 3% for Ch.
2 and 2% for Ch. 3 and 4 [R. van Oss, personal
communication], 1◦ uncertainty for the angular input
data and 3 K for the UKMO temperature profiles.

The second method investigated has been in-
spired by Satchwell (1994, verbal presentation,
cited in Bishop, 1995a). We trained a second neu-
ral network with exactly the same structure and in-
put data as the retrieval network, but replaced the
training collocations with the absolute difference be-
tween the retrievals and the collocations. The sec-
ond network learns the dependence of error mag-
nitude on the input data, giving an error estimate
similar to the one provided in the previous two Sec-
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tions, but this time for individual profiles. Due to the
neural network property of reproducing the condi-
tional average of the output, these error estimates
when applied to the entire training data set sum up
to give essentially the same picture as in Fig. 3.
However, Dybowski (1997) notes that this method
may result in a slight overestimation of high errors
and underestimation of low errors, due to the opti-
mization behaviour of the training algorithm. This
remains to be checked for our data; visual compar-
ison of the trained errors with the noise errors did
not show any obvious anomalies, though.

Figure 6: Different NNORSY relative error esti-
mates for a sample ozonesonde collocation from
station Legionov, Poland (52.7◦N; 19.3◦O), 10th
Feb. 1999. The noise error is derived from disturb-
ing the input data, the trained error results from a
second neural network. Classical error propagation
using the neural Jacobian leads to questionable re-
sults. See text for further details on the methods
employed.

For the midlatitude high ozone situation depicted
in Fig. 6, the brute force approach results in a rel-
ative standard deviation of around 5-10%, rather
constant over height with the exception of a peak
of 20% at 9 km. These statistics are based on
M =5000 noisy retrievals. The error-trained net-
work yields a very similar error profile shape, but
reaches higher values, as was expected since it en-
compasses more error sources. Similar behaviour

of these two methods has been observed in differ-
ent situations (Müller, 2002), with the highest rela-
tive errors occuring in situations and height ranges
where low ozone concentrations coincide with high
ozone variability and/or low training data density,
i. e. inside the Antarctic ozone hole, around the mid-
latitude tropopause and in the tropical upper tropo-
sphere. As noted above, the Jacobian-calculated
errors are generally larger by one or two orders
of magnitude, and do not seem to represent the
deviation of the retrievals from collocated profiles
correctly. The best way to assess the quality of
the error estimates gained thus far would probably
be to investigate their impact when assimilating the
NNORSY ozone profiles into a chemical transport
model with independent validation.

Another interesting aspect of the noise error
method is that it allows the output error correlation
to be assessed simply by statistics on the noisy
retrievals. In Fig. 7, we compare this correlation
to the correlation of the Jacobian column vectors.
Although not directly comparable in a mathemati-
cal sense, both should yield a measure of how the
output profile levels are linked to each other. The
resulting correlation matrices turn out to be fairly
similar. Both show a largely symmetric and well-
defined decrease of correlation around the diago-
nal, and distinct off-diagonal anticorrelations of the
levels below 20–22 km to greater heights, which
probably correspond to vertical ozone peak shifts:
For instance, if the NNORSY retrieval wrongly shifts
the ozone profile to a lower height, the steep flanks
around the ozone peak will cause values below the
peak to have a high tendency, while at the same
time values above the peak will tend to be too low,
hence the observed anticorrelation. It also follows
that the similarities observed in the neural Jacobian
column profiles do carry some information on the
system’s behaviour, which expresses in their height
correlation, but cannot be exploited for error magni-
tude estimates, as shown above.

4.2. Vertical Resolution

The estimation of vertical resolution via averaging
kernels (AKs) (Rodgers, 1990), as commonly used
for classical retrieval schemes like OE, does not
seem to be a ideal solution for the NNORSY sys-
tem. The AK matrix A is defined here as

A = DyK , (14)

where Dy is the neural network Jacobian from
Eq. 10, and K has to be calculated according to
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Figure 7: Combined error correlation matrix, aver-
aged over the test data set. The upper left half of
this matrix is derived from Jacobian column corre-
lation, the lower right from noise error correlation.

Eq. 3 using a separate forward model. Each row
of A then contains an AK for the respective height
level.

While Jiménez (2000) found neural AKs for a
simulated microwave limb-sounding retrieval to be
comparable to OE AKs, if somewhat noisier, he also
points out that the problem considered was fairly lin-
ear. For neural forward models, localized height in-
formation has been observed to spread out through
the network during the different normalization pro-
cedures and nonlinear transfer functions it is sub-
mitted to (Aires et al., 1999; Chevallier and Mah-
fouf, 2000). This leads to rather ill-conditioned Ja-
cobians, as has been seen for NNORSY as well in
the previous section. Using Jacobian-derived AKs
for resolution estimation might also be inappropri-
ate in our case for another reason, which is the
wealth of statistical information present in the re-
trievals; in fact, some high-resolution features seen
in the NNORSY profiles cannot possibly stem from
spectral information alone. Therefore viewing the
system through the classical AK lens might give a
twisted impression of the observed geophysical ver-
tical resolution altogether.

In view of these issues, we opted for a largely
heuristical approach to vertical resolution estima-
tion. From visual impression, it is obvious that
the NNORSY profiles are oversampled, i. e. effec-
tive resolution is worse than the 1 km height sam-
pling used for the output neurons. Ozonesondes

and the occultation instruments used for colloca-
tion thus have a better resolution than NNORSY in
most cases. A considerable part of the differences
between retrievals and collocations in Fig. 3 can
therefore be attributed to smoothing (cf. Rodgers,
2000). Convolution of the collocated profiles with a
smoothing function should be able to reduce this er-
ror contribution. However, in the limiting case of an
infinitely bad resolution, the smoothed profile would
be constant over height, which obviously gave rise
to large smoothing errors again, this time from the
collocated profiles being too badly resolved. Some-
where between the extremes of full resolution and
completely flattened profiles, there should be a min-
imum error, the corresponding FWHM of which
could be viewed as the effective resolution of the
retrieval at this height level.

We use Gaussians of variable full width half max-
imum (FWHM) δ as smoothing functions, which
is equivalent to constructing AK matrices Aδ from
Gaussian-shaped AKs. Then, for δ varied in steps
of 0.1 km, we calculate the RMS error of retrievals
R̂(·) against smoothed test data set collocations,

RMSEδ =

√√√√ 1
T

T

∑
p=1

(R̂(yp,cp,w)−Aδxp)2. (15)

In contrast to the standard deviation, the RMSE
was chosen to take into account biases as well,
which may occur whenever steep gradients in the
profile are smoothed out. To reduce fringe effects
from the convolution with incomplete profiles, which
were observed to produce strong fluctuations, val-
ues at height levels with sonde and limb data miss-
ing were filled with corresponding retrieved values.
Obviously, as soon as too many missing values
have to be replaced by retrievals in a given height,
the results will get distorted. It is clear that the
smoothing error of a retrieval with respect to a
smoothed version of itself can only rise, therefore
the minimum error FWHM tends towards zero when
the number of missing values increases. Note that
this argument would not hold if we had used a cli-
matology to replace missing values.

Plotting the RMSE against δ and height results
in the contour seen in Fig. 8a. This plot was calcu-
lated from test collocations, but for training data (not
shown) there is very little difference, which hints at
a good generalization performance of the system —
considerably larger test data set errors would have
meant the network only “memorized” the training
data.
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Figure 8: (a) Test data set absolute RMSE variation (in arbitrary units) when convoluting target profiles
with a Gaussian of given FWHM. (b) FWHM at which minimum RMSE occurs, calculated for different data
(sub-)sets.

A distinct saddle can be observed in the contour,
the corresponding FWHM ranging between 3–5 km
at 11 to 32 km gph, and between 1–3 km below
and above, with the exception of the lower tropo-
sphere, where the minimum error occurs at 3–8 km
FWHM. For once, it is clear that the method only
works where the ozone profile exhibits some struc-
ture. Therefore interpretation of the minimum curve
requires some care. To assist in the interpretation,
Fig. 8b differentiates the results by collocation type.
As can be seen, there is good agreement between
the occultation and sonde curves between 8 and
22 km gph, with the curves diverging above and
below. Due to the abovementioned treatment of
missing data, we may safely assume the maximum
FWHM from both curves to closer resemble the true
vertical resolution.

Above 30 km, the collocated profiles are gener-
ally very smooth in the first place, therefore we can-
not draw certain conclusions from the results here.
On the other hand, vertical resolution is not as crit-
ical when there is no fine structure to detect. The
other extreme can be observed below 12 km gph.
Here, the convolution with a Gaussian of even rel-
atively small FWHM leads to a shifting of ozone
from the high ozone lower stratosphere into the
troposphere, where it degrades retrieval accuracy.
Thus, the minimum FWHM is unrealistically small.
In fact, OE-derived AKs at these height levels tend
to be quite asymmetric (Hoogen et al., 1999), such

that the approximation with a Gaussian may not re-
flect the physical conditions correctly. Using only
sonde data from the tropics (not shown), where the
tropopause is located at 15 km altitude and above,
the RMSE minimum below 12 km altitude occurs at
5–8 km FWHM.

Figure 9: Comparison of the different vertical reso-
lution estimates employed.

It might be worthwhile to compare the empirical
resolution estimates obtained here with the height
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level correlation lengths which can be derived from
Fig. 7. Since the gradient between the contours for
correlations of c =0.6 and 0.8 is particularly steep
and the contours are quite well-defined, we choose
the width of the diagonal ridge for c≥0.7 as a mea-
sure of correlation length. Calculating this length
separately for Jacobian and noise error correlation,
and plotting it together with the maximum of the
curves in Fig. 8b results in the graphs shown in
Fig. 9. As can be observed, these resolution es-
timates agree reasonably well below 32 km, but di-
verge strongly above that level. The 10–11 km verti-
cal resolution assessed through correlation lengths
is probably quite realistic for larger heights, because
it corresponds with the very smooth shape of the
occultation profiles. Note however that this is a limi-
tation of the training data, not necessarily of the re-
trieval system: From radiative transfer theory, there
should be enough information in the GOME spec-
tra to achieve better vertical resolution in this height
range (Burrows et al., 1999; Hoogen et al., 1999).
Inclusion of high-resolution lidar data into the train-
ing dataset might prove helpful to exploit this infor-
mation in future versions of NNORSY. In the tro-
posphere, looking at individual correlation matrices
(not shown) reveals a lot of off-diagonal correlations
and usually a fairly irregular diagonal ridge, there-
fore correlation lengths in this height range may not
be dependable.

Figure 10: NNORSY ozone profile retrieval with a
collocated ozone sonde measurement, smoothed
by Gaussians of varying FWHM.

It may be surprising to see that these vertical res-
olution estimates are well below the theoretical limit
derived from radiative transfer theory, which lies

around 6–8 km (Hoogen et al., 1999). We attribute
this contradiction to the direct use of statistical and
temperature information, and the absence of linear
approximations in the system. To emphasize our
point, Fig. 10 shows a NNORSY retrieval of a fairly
extreme ozone hole case, where it can be seen
that the collocated ozone sonde does indeed cor-
respond best to the retrieval when smoothed with
an FWHM of 2–4 km.

To summarize the findings presented, it seems
that NNORSY ozone profiles have an effective ver-
tical resolution (FWHM) of around 4 km in the 12–
31 km GPH range, where the results are most re-
liable. Above 31 km, resolution degrades to about
10–11 km at 50 km GPH. This is a consequence of
the smooth training profiles used, and does not nec-
essarily reflect full exploitation of GOME spectral in-
formation. In the troposphere, resolution is difficult
to assess with both methods employed, but is prob-
ably slightly less than in the stratosphere and dis-
torted by long range correlations to greater heights.

5. CONCLUSIONS AND OUTLOOK

It has been demonstrated that the regularization
imposed by using a neural network approach is
sufficient to solve the inverse retrieval problem for
GOME ozone profiles with stability and results com-
parable to classical methods. NNORSY is taking
part in the international effort of comparing different
retrieval systems in the frame of the ESA/ESRIN
GOME Ozone Profiling Working Group, where we
expect to gain more insight in the chances and
problems of our method.

However, it is already clear that one big advan-
tage of NNORSY is speed, making it well suited for
real-time applications and global data reprocessing,
even at full GOME horizontal resolution. An experi-
mental near real-time system is already in operation
at the German Remote Sensing Datacenter (DFD)
of the DLR, the data can be accessed via the inter-
net†. Error characterization still needs to be some-
what improved on a global and case-by-case basis
for the operational product.

While the method is implicitly correcting for cloud
albedos and degradation in GOME channels, it de-
pends crucially on high quality training data. There-
fore it cannot be used for species which are only
sparsely measured. However, in case a forward
model can accurately simulate measurements for

†http://auc.dfd.dlr.de/GOME_NRT/profile.html
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a given sensor, using a partially or entirely simu-
lated training data set is a viable option. In fact, this
approach has recently led to the development of a
new type of ground-based UV spectral radiometer‡

based entirely on MPLs trained with simulated UV
ground spectra (Schwander et al., 2001). As a glob-
ally optimizing retrieval system, neural networks re-
act to input data in a completely different way than
local approaches like Optimal Estimation. If a bias-
free training data set can be constructed, their re-
trievals results will also be globally bias-free, which
might prove useful in applications like data assimi-
lation.

For NNORSY-GOME ozone profiles, further im-
provements in the fields of spectral calibration and
state space sampling distribution could lead to a yet
better data quality in the future, especially concern-
ing extreme cases of ozone profiles. This might
include exploiting additional profile data sources
– lidars, advanced sounders – and improving the
outlier detection algorithms for both ozone training
data and GOME spectra. Biases and errors oc-
curing around the problematic tropopause region
could probably be considerably reduced by defin-
ing a variable output height grid relative to the
tropopause height, for this would introduce greater
consistency e. g. between tropical and extratropical
ozone profiles. There is also improvement potential
in the refinement of the network architecture and
training method. For instance, using an error func-
tion specifically adapted to the retrieval problem or
training different (specialist) networks and combin-
ing their results might yield more accurate results
and error estimations.

An adaptation of NNORSY towards state of
the art sensors (SCIAMACHY, OMI, GOME-2) is
planned, and can be carried out with consider-
ably reduced effort, because instrument calibration
specifics are learned automatically by the network,
and much of the work in setting up software and
training data has already been done. Since both
the number of available training data and the com-
putational effort for classical retrieval and/or assim-
ilation of data from upcoming satellite instruments
increase steadily, we expect to see growing use of
neural network type methods in satellite meteorol-
ogy, especially in the operational regime.
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