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1. INTRODUCTION 
 

An emerging research focus in global change 
studies is the identification, quantification, and 
communication of uncertainty.  Uncertainty is a 
particular concern for integrated assessments, including 
those involving the impact of climate, as the uncertainty 
associated with each component of an assessment can 
propagate through the assessment process.  This 
uncertainty “cascade” (Mearns and Hulme, 2001) places 
severe constraints on policy recommendations derived 
from impact assessments. 

 
Katz (2002) argues that a fully probabilistic 

approach should be the ultimate goal of uncertainty 
analysis.  Previous attempts to assign probabilistic 
values have usually involved identifying the major 
sources of uncertainty, representing these uncertainty 
sources as probability density functions, driving a model 
(e.g., climate model) using multiple values from the 
probability density functions, and combining the model 
outcomes into an output probability density function 
(Wigley and Raper, 2001).  A major difficulty of this 
approach is defining appropriate probability density 
functions for the uncertainty sources.  Typically, either a 
uniform distribution is assumed or the distribution is 
defined subjectively based on expert judgment.  A 
second important limitation is that uncertainty in the 
model structure is not considered.  Jones (2000) 
proposed a somewhat simpler approach whereby 
multiple scenarios are used to estimate the “quantifiable 
range of uncertainty” for a particular source.  Ideally, the 
quantifiable range approaches the total range of 
uncertainty if a diverse group of scenarios is selected.  If 
more than one uncertainty source exists, then 
conditional probabilities can be calculated by first 
defining the second uncertainty source in terms of the 
first, next assuming a uniform distribution for each 
source, then randomly sampling the component 
uncertainties across their respective quantifiable 
uncertainty ranges and finally multiplying the samples 
from each source.  An advantage of this approach is 
that uncertainty in model structure is included, although 
only implicitly.  A limitation, of course, is the simplistic 
and likely unrealistic assumption of uniform distributions 
for the uncertainty sources.  Also, it is difficult using this 
approach to simultaneously consider more than two 
sources of uncertainty.   
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We propose an alternative method for 
evaluating and communicating uncertainty that involves 
1) the use of a large suite of local climate change 
scenarios to estimate a quantifiable range of uncertainty 
and 2) the application of analysis of variance (ANOVA) 
and related non-parametric procedures to determine the 
relative magnitude of multiple sources of uncertainty, 
the “interaction” between the uncertainty sources, and 
the statistical significance of the source and interaction 
terms.  The motivation for this study is summarized by 
Katz (2002) who states that “The field of climate change 
impact assessment will be better off in the long run the 
sooner it is recognized how severely underestimated 
uncertainty presently is” (p. 182).  For this 
demonstration, the ANOVA technique is applied to 240 
annual scenarios and 960 seasonal scenarios of the 
projected change in the mean and standard deviation of 
temperature.  The scenarios were originally developed 
to assess the potential impact of a perturbed 
(approximately 2xCO2) climate on agriculture in the 
lake-modified zones surrounding the Great Lakes and 
are unique in terms of the shear number of scenarios for 
a region.  Uncertainty sources were defined as 1) the 
downscaling methodology used to develop the 
scenarios, 2) the choice of coarse-scale GCM output to 
which the downscaling methodology was applied, 3) the 
location for which the scenario was constructed, 4) the 
predictand (i.e., maximum or minimum temperature), 
and 5) season.  Admittedly, between-location, between-
predictand and between-season differences are 
frequently of interest to users of climate scenarios and 
typically would not be considered uncertainty sources.  
However, inclusion of these terms in the ANOVA 
analysis allows their magnitude relative to the two 
primary uncertainty sources (i.e., downscaling 
methodology and GCM simulation) to be assessed.   
 
2.  DATA AND METHODS 
  

Simulations from four GCMs (Canadian 
Climate Center (CCC) GCMII, the Hadley Center UKTR, 
Max Planck Institute (MPI) ECHAM3, and the Goddard 
Institute of Space Studies (GISS) Version IV) were used 
in the scenario development.  As the scenarios were 
developed over an extended period of time, the 
characteristics of the GCMs vary widely.  Two 
approaches were employed to downscale the GCM 
simulations to six locations surrounding the Great 
Lakes.  First, the GCM-simulated series of daily 
maximum or minimum temperature from the land 
gridpoint nearest the station location were used directly 
(referred to as the GRDPT scenarios).  Second, a 
regression-based statistical downscaling methodology, 



which relates large-scale free atmosphere variables to 
local temperature, was employed.  Four “variants” on 
the empirical methodology were derived, as an earlier 
sensitivity analysis showed that the transfer functions 
and consequent downscaled scenarios were sensitive to 
subjective choices made when developing the functions, 
particularly the definition of the seasons used to 
calibrate the functions and the decision to adjust for bias 
in the GCM simulations of the predictor variables 
(Winkler et al., 1997).  The four variants are: 1) PN 
functions (no standardization, one annual specification 
equation), 2) PS functions (no standardization, four 
seasonal specification equations), 3) ZN functions 
(standardized predictor variables, one specification 
equation), and 4) ZS functions (standardized predictor 
variables, four specification equations).  We considered 
the four variants (i.e., PN, PS, ZN, ZS) to be separate 
downscaling “methods” in order to maintain a balanced 
design for the ANOVA procedure.   
 

The dependent variables were the projected 
changes in the annual and seasonal means and 
standard deviations and the categorical independent 
variables were the five uncertainty sources (METHOD, 
MODEL, LOCATION, PREDICTAND, and SEASON).  
Important assumptions of ANOVA are that the data 
within each cell are independent and normally 
distributed with equal variance.  However, Levene’s test 
suggested that the cell variance was unequal for some 
of the dependent variables.  Consequently, ANOVA was 
performed on both the original values and on log-
transformed values.  In addition, the parametric ANOVA 
procedures were supplemented by non-parametric tests 
(i.e., Kruskal-Wallis test).  A source (i.e., main effect) 
term was considered significant only if judged so by 
both the parametric and non-parametric methods.  The 
significant main effect terms were then used to rank and 
quantify the uncertainty sources.  Interaction terms were 
limited to two-way interactions, which we felt were the 
most insightful for interpreting and annotating the 
scenarios.  For all analyses, Bonferroni critical values 
(i.e., the probability of a Type I error adjusted for 
multiple comparisons) were used to test the significance 
of the main effect and interaction terms.  A critical 
(alpha) level of 0.05 was used for all significance tests.   
 
 
 

3. RESULTS 
 
The maximum quantifiable range of uncertainty 

for this suite of  scenarios is substantial (Table 1).  For 
example, the range of uncertainty is 4.8oC for the 
projected change in annual mean temperature and 
10.2oC for the projected change in seasonal mean 
temperature.  The projected changes in annual and 
seasonal standard deviation range from substantial 
reductions in temperature variability to substantial 
increases.   
 
Table 1: Maximum quantifiable uncertainty for climate 
change projections for a doubled CO2 environment for 
the Great Lakes region. 

 

VARIABLE 

 
QUANTIFIABLE 
UNCERTAINTY 
RANGE 

 
MINIMUM 
CHANGE 
(oC) 

 
MAXIMUM 
CHANGE 
(oC) 

 
Annual 
mean 
temperature 

 
4.83 

 
1.75 

 
6.58 

 
Seasonal 
mean 
temperature 

 
 

10.19 

 
 

-0.95 

 
 

9.24 

 
Annual 
standard 
deviation 

 
 

4.12 

 
 

-2.29 

 
 

1.83 

 
Seasonal 
standard 
deviation 

 
 

9.64 

 
 

-5.43 

 
 

4.21 

 
Histograms of the projected changes, which 

are a reflection of the underlying probability density 
functions, differ noticeably for the four variables (Figure 
1). The histogram for the projected change in annual 
mean temperature approaches a uniform distribution, 
whereas the histogram for the projected change in the 
seasonal means more closely resembles a normal 
distribution, although a modest negative skew is 
noticeable.  The histograms for the projected change in 
annual and seasonal standard deviations are non-
normal and non-uniform.  Both histograms indicate that 
a few scenarios are disproportionately contributing to 
the quantifiable uncertainty range for these two 
variables.   



 
 
Figure 1.  Histograms of the projected change in annual and seasonal mean temperature and of the projected change 
in annual and seasonal standard deviation. 
 

For the projected change in annual mean 
temperature, two sources of uncertainty, MODEL and 
METHOD were significant (Table 2).  Between-category 
differences are more than twice as large for the MODEL 
main effect term than for any of the other main effects.  
The range in the category averages for MODEL is 
3.0oC, compared to 1.1oC for METHOD.  SEASON and 
PREDICTAND were also significant for the scenarios of 
projected change in seasonal mean temperature.  Note, 
however, the between-season and especially the 
between-predictand differences are smaller than the 
uncertainty introduced by the choices of GCM model 
and downscaling methodology.  For the projected 
change in annual standard deviation, the two significant 
terms were MODEL and METHOD with the MODEL 
main effect term contributing the most (1.4oC compared 
to 0.4oC) to the quantifiable range of uncertainty.  In the 
case of the projected changes in seasonal standard 
deviations, the MODEL and SEASON main effect terms 
were significant.  The choice of downscaling method 
was not significant for this variable.  For all variables, 
locational differences were not significant. 
 
 
  

Table 2: Statistically significant sources of uncertainty 
(alpha = 0.05). 

SOURCE OF 
UNCERTAINTY 
 

DIFFERENCE 
IN CATEGORY 
MEANS 
(oC) 

NUMBER OF 
SCENARIOS 
PER CATEGORY 
 

ANNUAL MEAN TEMPERATURE 
MODEL 2.99 60 (240)* 

METHOD 1.13 48(192)* 
SEASONAL MEAN TEMPERATURE 
 all of the above plus 
SEASON 0.91 240 

PREDICTAND 0.21 480 

ANNUAL STANDARD DEVIATION 

MODEL 1.43 60 

METHOD 0.42 48 

SEASONAL STANDARD DEVIATION 

MODEL 0.72 240 

SEASON 0.46 240 
*Value in parentheses is the number of scenarios used to 
calculate the category mean for seasonal mean temperature.  
 



             Difference in means tests were then applied to 
the category means for those main effect terms that 
were shown above to be statistically significant sources 
of uncertainty.  Again parametric (i.e., t-test) and non-
parametric (i.e., Mann-Whitney U test) methods were 
used to account for non-normal distributions.  When test 
results differed, the most conservative interpretation 
was used (i.e, the fewest number of significant 
differences).  For the parametric tests, both the 
Bonferroni and Scheffe adjustments were used to 
account for multiple comparisons.  For the non-
parametric comparisons only the Bonferroni adjustment 
was employed.  The results for annual and seasonal 
mean temperature indicate that for this suite of 
scenarios, the projected changes were significantly 
different for all four GCM models (Table 3).  In terms of 
the downscaling methodology, the projected changes in 
annual and seasonal mean temperature derived from 
the ZN and PS methodologies differed the most, 
whereas the projected changes derived from the 
GRDPT, PN, and ZS methodologies were not 
significantly different from each other.  In terms of 
seasonal variations, the projected changes in mean 
temperature differed significantly between each of the 
traditionally-defined seasons. 

 
The ANOVA analysis also indicated that a 

number of the two-way interaction terms were 
significant.  In the case of seasonal mean temperature, 
significant two-way interactions included MODEL and 
SEASON, MODEL and METHOD, METHOD and 
SEASON, METHOD and PREDICTAND, and 
PREDICTAND and SEASON.  Inspection of plots of the 
category means for the interaction terms provides 
interesting insights on the nature of uncertainty.  For 

example, between-model differences in the projected 
change in seasonal mean temperature are smallest 
during the summer season and largest in winter (Figure 
2).  Also, between-season differences are fairly small for 
the CCC GCMII and the GISS Version IV models, but 
large for the MPI ECHAM3 and Hadley Center UKTR 
models.  
 
 
Table 3.  Comparison of category means for annual and 
seasonal mean temperature.  Means with the same 
letter are not significantly different. 

Category Category 
Means 

Groups 

MODEL  
CCC 5.35 A 
GISS 4.76 B 
UKTR 3.60 C 
ECHAM 2.37 D 
METHOD 
ZN 4.55 A 
PN 4.12 B 
GRDPT 4.08 B 
ZS 3.94 B 
PZ 3.42 C 
PREDICTAND 
TMAX 4.13 A 
TMIN 3.92 B 
SEASON 
Summer 4.51 A 
Fall 4.13 B 
Spring 3.83 C 
Winter 3.60 D 

 
 
 

 
Figure 2. Plot of the MODEL*SEASON two-way interactions for the projected changes in annual and seasonal mean 
temperature. 
 
 
4. DISCUSSION AND CONCLUSIONS 
  

The analyses presented above illustrate the 
importance of having available a large suite of local 
climate scenarios when undertaking a climate impact 
assessment.  A suite of scenarios allows for the 

calculation of a quantifiable range of uncertainty 
associated with the projected change in a climate 
variable.  Confidence in the adequacy of the uncertainty 
range increases with an increase in the number of 
available scenarios.  Furthermore, the scenario suite 
provides an estimate of the form of the underlying 



probability density function.  In addition, ANOVA can be 
applied to the scenario suite to determine the statistical 
significance of different uncertainty sources and the 
interaction of different sources which heretofore has not 
been considered.  For the suite of scenarios presented 
in this paper, it was shown that the choice of GCM 
simulation used to develop the scenario introduced the 
greatest uncertainty.  It should be noted that we 
considered the choice of GCM as only one source of 
uncertainty but in reality a number of uncertainty 
sources are combined within this term, such as the 
choice of emissions scenario, the inclusion/omission of 
aerosols, and model structure.  These sources could be 
explored more explicitly by designing an ANOVA 
analysis that includes scenarios that, for example, used 
the same model structure but employed different 
emissions scenarios.  Obvious constraints are access to 
the appropriate simulations and the time and effort 
required to create the additional scenarios. 
 

Our results also point to considerable 
uncertainty in local/regional climate change projections.  
In fact, the ranges presented here are likely 
underestimates of the uncertainty range as the 
scenarios were constructed from “early vintage” models, 
primarily equilibrium models and uncoupled transient 
models, and were either based on a simultaneous 
doubling of CO2 or an assumed one percent per year 
increase (roughly the IS92a emission scenario) rather 
than the recently-developed SRES emission scenarios 
(Nakicenovic et al., 2000).  As pointed out by Wigley 
and Raper (2001), the switch to the new emissions 
scenarios along with the use of state-of-the-art coupled 
atmosphere-ocean GCMs resulted in an increase in the 
projected range of global warming from only 0.8oC to 
3.5oC in the IPCC Second Assessment Report to 1.4oC 
to 5.8oC in the IPCC Third Assessment Report.  We 
expect a similar increase in the quantifiable uncertainty 
range when the downscaling methodologies are applied 
to more recent GCM versions.  However, comparison of 
local/regional climate change projections derived using 
older GCM vintages to those derived from newer GCM 
versions can provide valuable insights on the stability of 
the quantifiable uncertainty range associated with the 
projections.  We urge developers of climate scenarios to 
take care that the addition of new members to a 
scenario suite is done in a manner that facilitates 
statistical analysis of the magnitude and significance of 
the uncertainty sources.  We particularly encourage 
scenario developers to consider ANOVA methods, 
either the simple balanced design used here or more 
complex nested designs, to evaluate the statistical 
significance and interaction of the different sources of 
uncertainty.   
 
 
 

In sum, ANOVA provides one means of 
communicating to users the uncertainty contained in a 
large suite of climate scenarios.  Application of ANOVA 
to temperature scenarios for the Great Lakes region 
suggests that uncertainties introduced by the choice of 
GCM simulation and downscaling methodology are 
larger than the seasonal and spatial variations in the 
projected changes in the mean and standard deviation 
of maximum and minimum temperature.  These findings 
are a caution to impact analysts to not over interpret 
climate change scenarios.  
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