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1. INTRODUCTION

Interest into the possibility that global climate

change could be associated with changes in extreme

weather has stimulated diagnostic analyses of climate

model experiments for extreme events (e.g. Meehl et al.

2000; McGuffie et al. 2000). The purpose of such

analyses is to quantify the simulated frequency/intensity

of droughts, heavy precipitation, windstorms etc. and to

compare the results from a sensitivity experiment (e.g. a

model integration for future climate) with those from a

reference experiment (e.g. an integration for current

climate).

Classical analyses of extremes in climate models

have focussed on moderately rare events with a typical

return period of 100 days or shorter (1% quantile of

daily values; e.g. Hennessy et al. 1997, Durman et al.

2001). Moderate event thresholds warrant for

sufficiently large samples and hence for statistical

robustness of the results. Although this approach

provides insights into changes of the (model simulated)

frequency distribution, it is difficult to extrapolate the

results towards damage-relevant extremes with a return

period much larger than those considered. Recently,

several model diagnoses of extremes have been

conducted, adopting methods of extreme value

statistics, which permit, in principle, to estimate changes

for events with a much larger return period (20 years

and larger; see e.g. Kharin and Zwiers 2000, Jones and

Reid 2001). Although the results are of more immediate

relevance for impacts and damages, the uncertainty

due to limited sample size can be substantial.

Diagnosis for a change between two model

simulations requires an assessment of statistical

significance. This is commonly accomplished by means

of a statistical test, comparing the magnitude of the

change (the signal) against its statistical uncertainty (the

noise). The reliability with which a given change

between two model integrations can be detected as

statistically significant will then depend on the signal-to-

noise ratio. Large statistical uncertainty, such as that

expected from diagnostics on very rare extremes, limits

the detectability of a change. Quantitative knowledge of

these limits is an important prerequisite for designing

the diagnostic procedures and for interpreting results

adequately.

In this study the statistical limits for detecting a

change in extremes from two climate model integrations

is theoretically quantified. The probability of detection is

defined as the chance for identifying, from one pair of

model simulations, a prescribed change. This quantity is

equivalent to the power of the statistical test and it

depends on the magnitude of the change, the length of

the model integrations and the rarity of events under

consideration. Here we derive quantitative estimates of

the detection probability for the classical method of

extreme value statistics, recently applied as climate

model diagnostic.

2. EXTREME VALUE STATISTICS FOR TWO

SAMPLES

Extreme value statistics is an asymptotic theory on

extreme values from a large sample, very much like the

‘law of large numbers’ for the sample mean. Founded

by Fisher and Tippett (1928) and developed for

application by Gumbel (1958), the theory distinguishes

specific parametric families of distribution functions,

which describe sample extremes in the limit of large

sample size. The theory of extreme value statistics and

its applications in climatology are reviewed e.g. in

Palutikov et al. (1999) and Coles (2001).

In this study we consider the classical block

maximum method which deals with extreme values
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(maxima or minima) taken from a large sample, typically

the seasonal or annual extremes of daily values. In this

case the limiting distribution is the Generalized Extreme

Value distribution (GEV). Fitting a GEV to the sample of

extremes provides estimates of extreme values as a

function of return period. The GEV is a three-parameter

distribution family with location, scale and shape

parameter. It comprises the Gumbel distribution as a

special case. Results of a GEV analysis are commonly

displayed in a Gumbel diagram, showing the cumulative

distribution with a transformed return period axis, such

that the Gumbel distribution appears as a straight line.

An example Gumbel diagram is displayed in Fig. 1

showing observed maxima in daily summer rainfall

together with the corresponding GEV fit. Several

methods are available for the estimation of distribution

parameters. In this study, estimation is based on the L-

moments method, which in real applications was

demonstrated to be particularly robust (Hosking 1990,

1992).

Application of extreme value statistics for diagnosing

a change from a control integration to a scenario

integration of a climate model involves estimation of

distributions for each of the two integrations. The

situation is illustrated in Fig. 1 with samples and

distribution functions evaluated for distinct 30-year

periods of the observational record (red and blue

samples). In this example the fitted distributions imply

an increase of extreme values from the first (blue) to the

second (red) sample for return periods larger than about

5 years. There are several possibilities of a statistical

test for assessing the significance of this change. In this

study we adopt the Null-Hypothesis that the extreme

value at return period T for the scenario XS(T) is equal

to that of the control sample XC(T). This hypothesis is

accepted when XS(T) is comprised in the 95%

confidence interval for XC(T) and rejected otherwise.

(Note that this testing is asymmetric between the control

and scenario samples. A symmetric approach would

consider overlap of 78% confidence intervals from both

samples (e.g. Kharin and Zwiers 2000). The asymmetric

test was chosen here because of easier interpretation of

results later.) Indeed, for the example of Fig. 1,

estimates for the second sample (red) are outside the

confidence interval for the first sample (blue) and the

difference is statistically significant even for large return

periods. (Note that this is an extreme example chosen

to illustrate the method.)

3. DETECTION PROBABILITY

The detection probability is defined as the chance

with which a given change of an extreme value X(T)

(e.g. the 20-year return period rainfall) can be identified

as statistically significant. A schematic illustration of the

detection probability is depicted in Fig. 2. Let XC and XS

denote the true extreme values and the bell-shaped

curves depict the uncertainty of estimates for these

Figure 1: Example Gumbel Diagram showing two samples of

maximum summer precipitation observed in Zurich Switzerland,

(blue: 1931-1950, red: 1971-2000) together with the corresponding

fits of a generalized extreme value distribution. Values of location (χ),

scale (α) and shape (k) parameters are given in the inset. Blue lines

flanking the fit are 95% confidence lines of the fit.

Figure 2: Schematic of definition of detection probability. XC and XS

denote true (unknown) extreme values under control and scenario

conditions. Bell-shapes depict uncertainty of estimations of XC and

XS. Significance limit denotes the minimum distance between one pair

of estimates for XC and XS such that Null-Hypothesis (XC=XS) is

rejected.



values. One pair of estimates is taken to be statistically

significant if their difference exceeds the significance

limit. The chance of an arbitrary pair of estimates to be

statistically significant is equal to the fraction of the

green area under the red bell shape. The detection

probability is equal to the power of the statistical test. (A

more detailed description of the concept of detection

probability is given in Frei and Schär (2001)).

It is evident from Fig. 2 that the detection probability

increases with the magnitude of the prescribed change

XS–XC, (determining the separation of the two bell

shapes), and with the length of the simulations and

hence the available sample size (determining the width

of the bell shapes). On the other hand, the detection

probability for a similar change in extreme values

decreases with increasing return period T, as a

consequence of the widening of confidence bounds

towards more rare extremes (see e.g. Fig. 1).

In this study the detection probability is calculated

for specified changes in extreme values. The

specification requires the definition of distribution

functions (GEVs) under control and under scenario

conditions. For simplicity the predefined distribution

functions will be taken from the family of Gumbel

distributions. (Note that the subsequent estimation does

not restrict to the Gumbel distribution. This is relevant in

estimating the detection probability for the full

distributional flexibility of extreme value statistics.) The

procedure for defining distribution functions for control

and scenario conditions is displayed schematically in

Fig. 3. Without loss of generality it can be assumed that

the control distribution function has a position parameter

of 0.0 and a scale parameter of 1.0. (These parameters

define origin and units.) A predefined change of the

extreme value (XS–XC) at return period TC can be

accomplished by a change in the location parameter or

the scale parameter or a combination of both. The

simple cases correspond respectively to a vertical shift

or a rotation of the distribution functions in the Gumbel

diagram. The two basic examples will be termed

location and scale scenarios respectively.

The detection probability will depend on the change

of extreme values ∆X=XS–XC. However it will be more

illustrative to express the imposed change in terms of

changes in the return period. Here we define the

change in return period as the ratio TS/TC where TC is

the return period under consideration (i.e. under CTRL)

and TS is the return period which the changed extreme

value XS at T C would have under control conditions.

(See also Fig. 3). The relationship between ∆X and

TS/TC is approximately exponential (Fig. 4) although

Figure 3: Schematic Gumbel diagram showing distribution functions

for control and for scenario conditions that have been used in the

calculation of detection probability. Both, the the scale scenario (red,

change in scale parameter) and the location scenario (blue, change in

location parameter) correspond to the same absolute change (XS–XC)

at return period TC.

Figure 4: Relationship between relative change in return period TS/TC

(x-axis, log-transformed) and absolute change in extreme value

∆X=XS–XC (y-axis) for scenarios in GEV distributions. See also Fig. 3

for definition of symbols.



there are slight deviations from this, especially for

negative ∆X and smaller return periods T.

The calculation of the detection probability involves

the following sequential steps:

(a) Specification of distribution functions for control and

for scenario, consistent with the predefined change

in extreme value ∆X.

(b) Simulation of parametric bootstrap samples of

predefined size n from the control and scenario

distributions.

(c) Fitting of GEV distributions to each sample and

estimation of extreme values XC and XS.

(d) Calculation of detection probability by counting pairs

of estimates exceeding the significance limit.

4. RESULTS

Results of the theoretical estimation of the detection

probability are displayed in Fig. 5 as a function of the

relative change in return periods (T S/TC). These

estimates are valid for a sample size of n=30 both in the

control and scenario samples. The situation is

representative, for instance, for a diagnostic of annual

temperature extremes in two climate model time-slices

of 30 years length each. Results are shown for different

rarities (return periods T ,line types) and for the location

and scale scenarios respectively (blue and red). A

significance level of 5% has been used throughout.

The limitations for the statistical detection of a

change in extremes are evident: For events with a

return period of 5 years, a change by a factor of 2 in

frequency is detected with a probability of about 50%.

However for very rare events with a return period of 50

years, the detection probability drops to less than 20%

for the same relative change TS/TC. In fact, even a

change by a factor of 5 (increasing or decreasing)

would only be identified as statistically significant with a

probability of less than 50%.

The results for the location scenario are roughly

symmetric between increases and decreases for the

same relative change TS/TC. Strictly, similar values

would have been obtained for similar positive and

negative changes of extreme values ∆X. The slight

asymmetry for the location scenario in Fig. 5 is an effect

of the curvature in the relationship between absolute

and relative changes (see Fig. 4). Changing from the

location to the scale scenario the asymmetry between

increases and decreases becomes more pronounced.

For a similar increase in TS/TC the scale scenario has a

lower (higher) detection probability than for the location

scenario, if the probability is above (below) 50%. The

situation is reversed for decreases. This behavior can

be understood from the variation of confidence bands

between the two scenarios. Whilst for a location

scenario the confidence interval is similar to that of the

control, it is larger (smaller) than for control with an

increase (decrease) of the scale parameter in a scale

scenario. Fig. 2 can be used to make clear, that the

detection probability of a scale scenario should change

from that of a location scenario as depicted in Fig. 5.

Despite the fact that there is some sensitivity of the

detection probability upon the type of scenario, the

quantitative results are actually not overtly different (not

more than 20%). This suggests that the detection

probabilities depicted in Fig. 5 can be considered as

rough estimates for a change in extreme values,

essentially independent from the details of how this

change is related to changes in scale and location

parameters (or both) of the distribution function.

With the recent advance of ensemble modeling also

for high-resolution global and regional climate modeling,

there is some scope for sample sizes larger than the

standard of n=30 depicted in Fig. 5. Fig. 6 displays the

sensitivity of the detection probability upon sample size

Figure 5: Detection probability as a function of the magnitude of the

relative change in return period (TS/TC). Probabilities for an increase

(decrease) in extreme value are to the rigth (left) of TS/TC =1.0. Blue

lines are for the location, red lines for the scale scenario respectively

(see also Fig. 3). Results are given for the detection at various return

periods T in years (see line styles in legend).



(n=10, 30, 60, 90). For simplicity only results for the

location scenario are displayed. For the return period of

5 years (blue lines) there is indeed a remarkable

increase of detection probability with larger sample size.

For example, with n=90 (e.g. 3 ensembles of a 30 year

time-slice) the detection probability for a relative change

in return period (TS/TC) by a factor of 2.0 or 0.5 raises to

above 90%. In contrast, the probability with a sample of

only 10 years is significantly reduced. Again, the

detection probability for a change in the 50-year

extreme value (red lines) is sensitive to sample size.

However the improvement with n=90 still leaves

considerable limitations. For example changes by a

factor of 3 or lower can still be detected with only less

than 50% probability.

5. CONCLUSION

A theoretical estimation has been undertaken of the

probability with which changes in extreme events can

be statistically detected in a diagnostic analysis of

climate model simulations. The estimation was carried

out for the standard procedure of extreme value

statistics adopted to a control and a scenario sample

and using generalized extreme value distributions. The

results pinpoint to the potential limitations of such a

diagnostic especially for very rare events. For example,

using annual extremes from two time-slice simulations

of 30 years length each, a change of the 5-year extreme

value to the 10-year (or to the 2.5 year) extreme value

can be detected with a probability of about 50%.

However this value drops to below 20% for change of

the 50 year event to the 100 year (or to the 25) year

event. For these rare events even changes in the order

of a factor of 5 are detected with a probability lower than

50%.

These results do not question the theoretical

fundaments and principal suitability of extreme value

statistics for diagnosing extremes. However, they

pinpoint to the limited evidence on changes that can be

drawn from its applications with a small sample size

such as that commonly available from global and

regional climate models.

The results have a range of implications for the

interpretation and design of model diagnosis on

changes in extremes: Firstly, the absence of evidence

for a change (i.e. a change that turns out to be

statistically non-significant) should not be interpreted as

the absence of a change. Even quite substantial

changes can fail to be detected purely on statistical

grounds. Secondly, diagnostics dealing with moderately

rare, rather than extreme events, might be an important

complement to classical extreme value statistics.

Although the results may not simply be extrapolated to

the very far tail of the distribution function, such

diagnostics may be helpful in identifying statistically

sound changes in the frequency distributions which

themselves can guide further model diagnostics aiming

at a physical understanding of possible changes of

extremes. Finally, every possible measure should be

taken to optimize the sample size for a model diagnostic

on extremes. The use of ensemble model simulations

and the consideration of long simulations are

particularly important.
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Figure 6: Comparison of detection probability for different settings of

sample size (n=10,30,60,90; see legend for line styles). Results are

shown for the location scenario at return periods of T=5 years (blue)

and T=50 years (red).
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