
1. INTRODUCTION

It is presumed that tornado report counts for
monthly or longer periods may be directly related to
climate indices, since tornadoes tend to occur
during certain weather patterns (Fawbush and Miller
1954, Brooks and Craven 2002), and the frequency
of weather patterns may be directly related to climate
indices (Bjerknes 1969).  In support of this
supposition, Marzban and Schaefer (2001) have
found statistically significant sample correlation
between Pacific sea surface temperature (SST) and
tornado counts in the southeast U. S.  The research
presented herein differs from previous work in that
we simultaneously consider covariability of monthly
tornado counts with multiple climate indices.

We have developed a hierarchical stochastic
model to examine dependence between tornado
report counts and climate indices.  There are a
number of reasons that standard modeling
approaches, such as developing independent least
squares regression equations with Normal errors
for a field of observations, may be inadequate for
examining dependence between tornado report
counts and climate indices.  From a meteorological
perspective, frequency of weather patterns may differ
in separate years and at separate locations even
though climate indices are nearly identical, due to
internal variability of the atmosphere.  This means
that dependence between weather patterns and
climate indices may be non-stationary in space and
over time.  Additionally, tornado reports are likely to
be correlated in space when summed over monthly
or seasonal periods.  From a statistical perspective,
tornado reports are rare, discrete and non-negative.
Thus, it is expected that these data do not follow a
Normal distribution.  Finally, societal changes
introduce non-stationary reporting biases in both
time and space (Doswell and Burgess 1988, Brooks
and Craven 2002).

Typically, tornado report counts have been
preprocessed to remove non-stationary behavior
before applying a stochastic model to infer the
significance of certain sample statistics.  We have

taken an alternative approach in which a stochastic
model has been designed that explicitly models
non-stationary behavior by constructing a hierarchy
of conditional probability models that are linked by
applying Bayes theorem, a fundamental rule of
probability calculus.

2. DATA

Tornado reports from 1953-1995 were obtained
from the Storm Prediction Center archive of severe
weather reports (www.spc.noaa.gov/climo).  A grid of
50-km boxes was overlaid on the U. S., and the
number of tornadoes was tallied monthly in each
box.  Thus, time series spanning 1953-1995 of
monthly tornado report counts was generated for
each box.

Any number of climate indices may be
considered as predictors in a stochastic model. At
this preliminary stage, we have included the Nino3.4
SST index (since it is known that tornado report
counts are significantly correlated with equatorial
Pacific SST), the North Atlantic Oscillation (NAO), and
the North Pacific Index (NPI).

3. STOCHASTIC MODEL

Hierarchical stochastic models attempt to
decompose observed data into a series of
conditional probability models.  In this way, one can
build separate models for the observations (data
model), the stochastic process describing the
statistical behavior of the observations (process
model), and the parameter uncertainty (parameter
model).  The general hierarchical model has three
components:

Data Model: Pr[data | process, parameters]
Process Model: Pr[process | parameters]
Parameter Model: Pr[parameters]

where Pr[ ] denotes that a probability distribution has
been assigned, and the vertical line indicates the
probability distribution is conditional.
• The data model assigns a theoretical

conditional probability distribution to the tornado
report counts.  This provides the necessary
flexibility to use probability distributions other
than the Normal distribution. The parameters of
the data model depend on underlying process
and parameter models.  Thus, the
characteristics of the data model reflect
uncertainty not only of the observations but also
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of process and parameter model assumptions.
It is advantageous to use scientific reasoning
and knowledge in accordance with data
analysis when selecting a distribution for the
data model. With this approach, all available
knowledge is formally incorporated into the
analysis.

• The process model specifies a stochastic
process that relates tornado occurrence to
climate indices, with estimated parameter
values describing the degree of association. It is
possible that a number of stochastic processes
might adequately reproduce the statistical
behavior of tornado report counts.  In the
hierarchical framework, it is possible to
systematically compare alternative process
models.

• The parameter model assigns a theoretical
probability distribution to the parameters of the
process model.  Generally, point estimates of
parameters are used when predicting
observations.  For example, coefficients in linear
regression models are considered constant
when generating estimates of a predictand.  In
the hierarchical framework, the coefficients are
considered to be random variables.
In this preliminary study, we let Y(si;t) be the

number of tornado reports in some geographical
region indexed by si=1,...,n at times t=1,...,T (n is the
number of boxes and T is the number of months).
Thus, Y(1,t) corresponds to the monthly time series
of tornado report counts for box 1, as described in
Section 2.

The data model is given by:
Y(si,t)|λ(si,t) ~ Poisson(λ(si,t)) for all si,t

That is, conditioned upon the Poisson mean (λ),
tornado report counts are independent and follow a
Poisson distribution.  This does not suggest the
counts are marginally independent.  Instead,
marginal spatio-temporal correlation is generated by
an underlying process model rather than
incorporated directly in the data model.

The process model is given by:
log(λ(si,t))|βi,σ

2 ~ N(xtβi,σ
2
η)

where βi is a 7x1 (i=1..7) vector of regression
coefficients, xt is a 7x1 vector of covariates (intercept,
time trend, NAO, NPI, Nino3.4 SST, NAO cross
Nino3.4, NPI cross Nino3.4) that vary over time, and
σ2

η is site-specific variance that represents random
error.  That is, the log of the Poisson mean is
modeled by a time-dependent linear regression with
normally distributed, uncorrelated errors indexed in
space.  Geographical sampling biases, such as
those related to demographic characteristics, are
partially accounted for by σ2

η, while λ (xtβi) includes
linear dependence on time to partially account for
temporal sampling biases.

The parameter model is given by:
βi ~ N(0,Σ i)

where Σ i is a spatial covariance matrix.  Distributions
are assigned to Σ i and σ

2
η as well.

We then evaluate the joint distribution of all
parameters given the observations using Bayes'
Theorem.  Markov Chain Monte Carlo (MCMC)
methods are used to generate realizations of this
joint distribution.  See Wikle et al. (1998) for
examples of MCMC applied to problems in
atmospheric science.

4. RESULTS AND DISCUSSION

The spatial field for the posterior mean of β1 can
be interpreted as a representation of relative
frequency of tornado reports as reproduced by the
model, absent the effects of climate and population
fluctuations (Figure 1).  (Recall these parameters
are projecting onto the logarithm of λ, so that
parameters near zero are representative greater
tornado report frequency.)   Relatively large β1 covers
northern Texas, southern Arkansas, eastern
Kansas, and much of Oklahoma.  This pattern
strongly resembles raw tornado counts over the U.
S., although it is somewhat smoother, suggesting
the model capably captures regional differences of
tornado report frequency.

Figure 1. Posterior mean of β1 (intercept)
parameters.  Blue (red) represents large negative
(near zero) parameters.

Figure 2. Posterior mean of β2 (time) parameters.
Color scheme is identical to figure 1.



Linear trend of tornado report counts is analyzed
independently with β2 (Figure 2), so that changes in
time of reporting biases are separated from
dependence of tornado report counts and climate
indices.  The spatial field of β2 shows large positive
posterior mean values along the East Coast and the
southeast United States in regions of relatively high
population density; whereas, large negative values
are evident over much of the central United States,
where β1 is large.

Previous research has found a slight reduction
of annual U. S. F2-F5 tornado report counts from the
1950s to the 1990s (Brooks 2000).  It is suspected
that this decrease is largely attributable to changes

of procedure for assigning Fujita scale ratings of
tornado damage (Brooks and Craven 2002).
Tornado damage ratings prior to 1973 were
assigned from written eyewitness accounts reported
by the media.  After 1973, damage surveys have
been conducted for tornadoes that have caused
extensive damage.  Results of Brooks and Craven
(2002) suggest that tornado ratings prior to 1973 are
systematically larger by about one half of a Fujita
category.  That is, a tornado rated F2 prior to 1973
may be given a rating of only F1 by today's rating
standards.  This is consistent with negative β2 in
less densely populated areas in the central United
States in that prior to 1973 ratings for tornado
damage in these regions would've been heavily
dependent upon reports from news media.
However, positive β2 in densely populated areas
contradicts this theory, suggesting more
sophisticated theories are needed for explaining
impacts of population shifts and severe weather
awareness on reporting bias.

 Each climate index projects significantly onto
the logarithm of λ.  Extensive areas of large
magnitude for posterior means of β4 and β5 are

(a)

(b)

(c)

Figure 3. Posterior mean of (a) β3 (NAO), (b) β4 (NPI),
and (c) β5 (SST) parameters.  Color scheme is
identical to figure 1.

(a)

(b)

Figure 4. Posterior mean of (a) β6 (NAO cross with
Nino3.4) and (b) β7 (NPI crossed with Nino3.4)
parameters.  Color scheme is identical to figure 1.



evident (Figure 3).  The spatial field of β5 exhibits
large negative values over much of the southeast
United States.  This pattern is consistent with results
from Marzban and Schaefer (2001) and Monfredo
(1999) both of which diagnosed significant negative
correlation between Pacific SST and tornado reports
in the southeast United States.  In the spatial field of
β5, large positive values cover the western Plains of
the central United States.  The spatial coherence of
these regions of negative and positive mean
parameter values suggests that these signals are
robust in the sense that similar spatial patterns of
tornado counts may be produced in multiple years.
In contrast, small-scale variability of the parameters
might indicate a tornado outbreak in a particular year
has forced the model to project strongly onto the
parameters.

It is apparent from visual inspection of spatial
fields for posterior mean values of β4 and β5 that
these parameters contain much more small-scale
spatial variability than β4.  Since NPI and NAO have
lower frequency fluctuations compared to Nion3.4, it
is possible that weather conditions associated with
certain phases of NAO or NPI may have greater
variability than those associated with fluctuations of
Nino3.4, causing variability of the location of tornado
outbreaks.  This hypothesis is supported by spatial
coherence of fields of posterior means for
parameters of interaction terms in which the slower
varying NAO and NPI indices are individually
combined with the Nino3.4 index (Figure 4).
Interestingly, parameters of opposite sign are
produced in the southeast United States with
negative values associated with interaction between
NAO and Nino3.4.

5. FUTURE WORK

Future model development will concentrate on
incorporating explicit models for sampling biases.
In particular, the hierarchical model will be extended
to include a sub-component that accounts for the
probability that a tornado occurred but was
unreported.  Incorporating this conditional probability
will further elucidate the extent to which fluctuations
of tornado reports are explained by shifts of
population rather than climate.

Meteorological analysis will concentrate on
identifying favorable weather parameters that are
associated with these climate indices.  To this end,
synthetic soundings will be created from reanalysis
data and will be examined for common
characteristics in regions of coherent positive and
negative parameters following the results of
Rasussen and Blanchard (1998) and Brooks and
Craven (2002).  Immediate interest will be given to
negative dependence of Nino3.4 and tornado report
counts.  It is widely reported that storminess is

increased over the southeast United States during
the spring months of a decaying El Nino.  That is,
precipitation and frequency of thunderstorms is
known to be greater while Nino3.4 is still positive in
the springtime following a strong wintertime El Nino.
This would seem to be an environment that would
also support more frequent tornadoes.  The analysis
reported herein and elsewhere by other authors
indicates this is not the case, although testable
meteorological hypotheses have yet to be formed.  In
addition to meteorological analysis, spatial variability
of parameters will be analyzed in order to quantify
scales of spatial variability and to determine their
causes.
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