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1. INTRODUCTION 

We present a new statistical method of identifying 
lithologies relying on wireline log measurements made on 
two holes from the french site of Marcoule. Since several 
years, statistical techniques have appeared as a powerful 
tool to classify complex and heterogeneous reservoir 
lithology: Multivariate Statistics [Doveton (1994)], 
Discriminant Analysis [Busch (1987)] and, more recently, 
Neural Networks have been applied to this problem. 
Concerning Neural techniques, Multilayer Perceptrons 
(MLPs) are used to classify lithologies, either relying on 
well-logs directly [Samuel (1992)], or sometimes after 
using Kohonen Maps to determine the lithologies of the 
reservoir [Saggaf (2000)]. Also, Self-Organizing Maps 
have been used to reconstruct the lithologic facies of a 
drilling hole [Frayssinet (2000), Anouar (1997)].  

The goal of this study is to identify lithologies from logs, 
relying on information about rocks porosity and 
permeability. To this end, we propose an original 
approach based on Hidden Markov Models (HMMs). 
Indeed, we consider a log serie of a drilling hole as a 
sequence of measures, and propose to model it in the 
statistical framework given by HMMs. The reason is that, 
in this way, we can take into account contextual 
dependencies between measures made at different levels 
of the drilling hole, while performing lithology identification. 
In particular, in complex reservoirs, several lithologies are 
mixtured, and it is extremely difficult, even for a human 
expert, to determine which is the lithology relying only on 
the log measures taken at a given level. In this framework, 
contextual information may be of importance to improve 
classification at a given level. HMMs are indeed well-
known statistical models in other applicative areas (like 
speech recognition, on-line handwriting recognition, etc..). 
They appear to be a powerful tool to exploit contextual 
information when performing classification locally in a 
sequence of observations. In such applications, the signal 
is temporal and non stationary; the context of a single 
observation brings information about the evolution of the 
signal in time. Our purpose in the present work is to 
envisage this approach for sedimental series deposited 
during time.  

This work is structured as follows: HMMs are briefly 
presented in Section 2, as well as their application to 
lithology identification. For that, we start describing the 
applicative context in detail. Then, the model is described 
in Section 3, and results are then presented and 
discussed in Section 4.  

2. HMM FOR LITHOLOGY IDENTIFICATION 

2.1 The applicative context: the Marcoule site 

The Marcoule site is in the south of France, in the Gard 
area, near Bagnols-sur-Cèze. A hundred million years 
ago, this site was covered by an ocean and aside the 
mountains of the Massif Central. It is why the subsoil is 
composed of both facies of continental origin (resulting 
from erosion of the cristallin formations of the Massif 
Central) and of marine origin. The subsoil is made of 
clayey and sandy sedimental series, which have been 
deposited at Cretaceous.  

Data come from two drilling holes, named MAR402 and 
MAR203. The profile of the Marcoule site shows a tilt of 
the soil between these two holes; because of this tilt, the 
facies encountered in MAR203 are encountered in the 
inferior half of the well MAR402. For that reason, MAR402 
is in fact more complete than MAR203 from a geological 
point of view: some facies present in MAR402 are absent 
of MAR203. This is an important fact in our study. Also, 
core data from holes is only available at certain levels of 
the holes. For this reason, we use labels resulting from a 
previous research work obtained with a Kohonen map on 
the Marcoule site [Frayssinet (2000)]. MAR203 is drilled 
until 891 mts and MAR402 until 1530 mts. We use three 
logs that are PEF (photoelectric effect), RHOB (relative 
density in gr/cm3), and GR (Gamma-Ray in API 
numbers). In the drilling, the measures are taken every 
half-foot (15.24 cm). Nevertheless, the study of signals 
shows that their vertical resolution is rather of around 50 
cms. In the drilling hole MAR203, we have 5590 
measures' levels, and in MAR402, 9962 measures' levels.  

According to [Frayssinet (2000)], twelve lithologies were 
determined in the Marcoule site: Limestones (C), Marls 
(M), glauconitic Sandstone (Gga), Shales (A), Other 
Shales (A1), Silts (S1), Other Silts (S), coarse Sandstone 
(Ggs), Sandstone (G), sandy Limestones (Cg), sandy 
Breccia (B) and Lignite (L).  

2.2 Hidden Markov Models 

In the last years, Hidden Markov Models have become a 
useful tool in non stationary signal recognition [Rabiner 
(1989), Rabiner (1993)]. HMMs are statistical models 
based on the classical Markov chains. Consider a 
stochastic process (qt) which is described at time t as 
being in one of a set of N states, S1, S2,…,SN. The 
process (qt) is a Markov chain if, in order to make a 
prediction at time t on what is going to happen in the 
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future, it is useless to know anything more about the 
whole past up to time t -1, i.e. 

( ) ( itjtmktitjt sqsqPsqsqsqsqP ======= −−− 11,2,1 ..., )      (1) 

We only consider the homogeneous Markov Chain, that is 
those processes in which the right-hand side of (1) 
(namely the transition probability from state qt-1 to state qt) 
is independent of time. The matrix of state transitions 
probabilities A={aij} and the initial distribution π are the 
relevant information in order to describe the time evolution 
of the process: 

( )itjtij sqsqPa === −1  , 1 ≤ i,j ≤ N                      (2)  

( ii sqP == 1π ) ,                  1 ≤ i ≤ N                       (3) 

The Markov Chain defined in this way is called an 
observable Markov model since the output of the process 
are the states. In many interesting problems in which the 
signal is non stationary, the states of the Markov Chain 
are hidden, not directly observable, and the observations 
are the random signals emitted by the states. A Hidden 
Markov Model (HMM) is therefore a double stochastic 
process characterized by: 

- the number N of states {S1, S2,…,SN} in the model; 

- the state transition probability distribution; 
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- the initial distribution; 

 ( ii sqP == 1 )π ,                 1≤ i ≤ N .                     (5)  

- the set of observation signal densities, B={bj}, where bj is 
the observation signal density when the process is in state 
j.       

A HMM provides the mechanism for a random system 
which may be described as follows. At time t=1, the initial 
state q1 =Si will be chosen at random, according to the 
initial distribution probability π. In this state Si, a signal O1 
will be observed according to the observation signal 
density bi. At time t=2, the process changes to another 
state Sj according to the transition matrix aij, and so on. 
Note that a complete specification of a HMM is given by 
the specification of probability measures A, B and π. In 
the following, λ=(A,B,π) denotes the complete set  of 
parameters specifying the HMM λ. For a complete 
description of training procedures in a HMM, see [Rabiner 
(1989), Rabiner (1993)].  

To identify lithologies, we first train a HMM per class (per 
lithology). During this step, called training, for each 
lithology, we optimize the models' parameters (A, B, π) 
that best explain a given set of observation sequences, 
called training database. Afterwards, in a second step, 
called recognition, a sequence of logs is, at the same 
time, segmented and recognized by the lithologies' 
HMMs. The Viterbi algorithm [Rabiner (1989)] gives 
indeed the sequence of states with highest likelihood for 

this observation sequence. This allows to segment the 
observation sequence corresponding to a log serie of a 
hole, in different lithologies, while such lithologies are 
recognized. These two steps will be detailed in section 3. 

3. TRAINING 

3.1 Structure of the Model 

There are different types of HMMs: discrete or continuous 
HMMs, regarding the nature of the state emission 
probability laws, left-right HMMs, or parallel ones, or 
ergodic HMMs, regarding to the topology of the model 
[Rabiner (1993)], that is the transitions that are authorized 
between the states of the HMM. 

We model each lithology by an ergodic and gaussian 
continous HMM. Ergodicity permits to envisage transitions 
from every state to any other state of the HMM (see 
Figure 1). Also, we used a mixture of gaussian densities 
to approximate the distribution of the observations, 
represented by the logs. This means that each 
observation Ot (each log) at time t, a vector of dimension 
3 (the PEF, RHOB and GR logs), is emitted by state j with 
probability: 
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where cjm  is the mixture coefficient for the mth mixture 
component in state j and η the gaussian density function, 
with mean  and covariance matrix U  for the mth 

mixture component in state j, that is 
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The mixture coefficients cjm satisfy the stochastic 
constraints: 

         1≤ i ≤ N, 1≤ m ≤ M                          (8) 
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Figure 1. Ergodic HMM of a given lithology (N states) 

 

3.2 Isolated Training 



 

We first consider a training paradigm in which isolated log 
sequences of each class (lithology) are used to train the 
corresponding HMM. We call this particular training 
paradigm "Isolated Training". For this, we cut the 
complete sequence of logs of hole 402 (the hole used for 
training purposes) into segments, where each segment 
corresponds to a different lithology. Each resulting 
sequence of observations in a given lithology has a size 
T≤16. We used the Baum-Welch algorithm to estimate the 
parameters of each lithology HMM λ=(A,B,π). To 
summarize, this algorithm maximizes iteratively P(O λ), 
the likelihood of the observation given the model. A local 
maximum is attained after a given number of iterations of 
the training database. This algorithm works in the 
following iterative form: 

 1.- Initialization of the model: the transition and initial 
probabilities are defined equiprobable. Also, the number 
of observations in each log sequence are distributed 
equitably in the states of the HMM. The same is done in 
each state regarding the number of gaussian densities of 
the state emission probability law.  

2.- After each he training database, we 
reestimate  as follows: 

iteration of t
)( Π= ˆ,ˆ,ˆˆ BAλ

- for the initial probability, the expected frequency in state 
si  at  time t=1 is computed as:  

  )(ˆ 1 ii γπ =          1 ≤ i ≤ N                                           (9) 

where γt(i) is the a posteriori probability of being in state i 
at time t:  

( ) ( )λγ ,OiqPi tt ==                                    (10) 

- for transition probabilities, the expected number of 
transitions from state si  to state sj, divided by the expected 
number of transitions from si is computed:  
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where:  

( ) ( λε ,,, 1 OjqiqPji ttt === + )         (12) 

that is, the a posteriori probability to be in state i at time t 
and in state j at time t+1; 

- for the state emission probabilities, the parameters of 
each gaussian density function and the mixture 
coefficients are reestimated. The mixture coefficient 
reestimation for the gaussian density k in state j is the 
following [Rabiner (1989)]: 
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where ( kjt , )γ is the probability of being in state j at time t 
with the kth mixture component accounting for Ot  
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Finally, the mean and the covariance matrix of the 
gaussian density k in state j are reestimated as follows: 
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3.- Training is stopped when the average log-likelihood on 
the training database is stabilized, that is when: 
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where c is 10-3 or 10-4 according to the class (lithology) 
that we consider. Baum [Baum (1970)] showed that at the 
rth iteration of this algorithm, we have: 

( )rr OPOP λλ ≥+ )( 1   

for each observation sequence, until a local maximum is 
reached.  

3.3 Contextual Training after Isolated Training 

After isolated training is performed, we consider this as an 
initialization for another type of training, that we call 
"Contextual Training".The interest of such training is to 
introduce in the parameter estimation process, contextual 
information present in the hole. Indeed, isolated training 
only trains each lithology model on isolated sequences of 
each lithology. In this new training paradigm, we consider 
instead longer subsequences of logs of the hole, 
containing several litologies. Then, for training purposes, 
we must concatenate the HMMs corresponding to the 
lithologies present in each of these subsequences. This 
way, parameter estimation for each of these lithology 
models will be influenced by the neighboring lithologies, 
as follows : the Viterbi algorithm [Rabiner (1989)] is used 
to segment the whole sequence into different lithologies, 
and this segmentation is exploited for training purposes, 
as we explain below.  

The Viterbi algorithm computes the optimal path shown in 
Figure 2 (the "hidden" state sequence) in terms of 
maximal likelihood of the whole logs-subsequence 
(containing C, M, and L), presented to the corresponding 



 

HMMs (those of C, M and L) (see Figure 2). The 
optimality criterion used on the sequence of logs is 
therefore global. Contextual information is introduced in 
the training process precisely when using the resulting 
optimal path to reestimate the parameters of the 
corresponding HMMs.  

 

 

 

 

 

 

 

Figure 2. Viterbi path computation during Contextual 
Training on a logs-sequence alternating C, M and L 

The Viterbi algorithm [Rabiner (1989)] is based on 
dynamic programming; this algorithm finds the best state 
sequence in the sense of maximal likelihood, for a given 
observation (logs) sequence. For the first t observations, 
the probability: 
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gives the best score along the path permitting at time t to 
reach state si: A recurrence is then stated as follows: 

[ ] )()(max)( 11 ++ = tjijtit Obaij δδ                           (19) 

Also, a variable ψt(j) contains the best preceding state for 
state j at time t. This algorithm has three steps: 

1. Initialization 

      ( ) )( 111 Obi iπδ =                                                  (20) 

                                    1≤ i ≤N ( ) 01 =Ψ i

2. Recursion: 

    ( ) [ ] )()(max 1 tjijtt obaij −= δδ    2≤t≤N          (21) 

   ( ) [ ]ijtt aij )(maxarg 1−= δψ        1≤ j ≤N 

3. Termination 

         [ )(max* iP ti δ= 1≤ i ≤N                             (22) ]       

    [ ])(maxarg* iq tiT δ=

The optimal state sequence is obtained by "backtracking", 
as follows : 

          t= T-1,T-2,….,1            (23) )( *
11

*
++= ttt qq ψ

As mentioned before, after this segmentation step, the 
reestimation of the HMMs' parameters is performed. This 
training paradigm is well-known as the Segmental K-
Means algorithm [Rabiner (1993)]. According to the 

segmentation given by the optimal state sequence, all the 
observations (logs) attributed to a given state are affected 
to a given gaussian density in this state. This is done by 
the computation of the distance of each observation to the 
means of all the gaussians in this state. For each 
observation, the gaussian realizing the minimum distance 
is affected to such observation. Then, parameter 
reestimation can be performed for the HMMs, as follows:  

- for the mean of the mixture component m, for a given 
sequence of the training database, 

States of the Models 
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              CCCCMMMMMLLLLLLL   Lithologies there δ is the Kronecker function, cm denotes cluster m 
(the observations affected to the mixture component m), 
and Ot denotes the current observation at time t.  

- for the covariance matrix of mixture component m:  
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The mixture coefficient is reestimated as the number of 
observations (logs) affected to cluster m of state j divided 
by the number of observations affected to state j :  
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3.4 Contextual Training after random initialization 

Another type of training was also tested: it consists of 
Contextual Training by the Segmental K-Means algorithm 
described in Section 3.3, when the HMMs are not 
initialized by Isolated Training (previously described in 
Section 3.2). In this framework, the training database (a 
set of sequences of length T≤25 of MAR402) is used once 
(one epoch) to initialize the HMMs, using the "correct 
path" instead of the optimal path computed by the Viterbi 
algorithm. The "correct path" is in fact the path that we 
obtain when we associate to each observation (a log) its 
correct label (the corresponding lithology). With this 
"correct segmentation" of each sequence of the training 
database, we obtain a first estimation of the HMMs' 
parameters by the Segmental K-Means algorithm.  

3.5 Convergence criteria 

Two convergence criteria are considered: the first one is 
based on the stabilization of the average log-likelihood per 
class; the second one is based on the stabilization of the 
performance of each lithology HMM (the percentage of 
correct classification).  

 



 

4. TESTING THE SYSTEM 

Classification is performed on the other hole (MAR203) 
using the Viterbi algorithm: the complete sequence of logs 
measured in MAR203 is presented to the 12 lithology 
HMMs at the same time, to compute the optimal state 
sequence in the Viterbi sense. To this end, transitions are 
authorized from any state of any HMM to any state of any 
other HMM.  

4.1 Testing after Isolated Training 

The following table (Table 1) shows the number of log 
data available per lithology in MAR402 ("Data" column in 
Table 1) and the number of resulting isolated sequences 
of each lithology ("Total" column in Table 1), after data in 
MAR402 is cut into segments (of maximum length 16) of 
each lithology. Notice that lithologies S, M and Cgs have 
the fewest number of sequences for training their 
respective HMMs. On the other hand, lithology L has the 
highest number of sequences for training purposes.  

 

Class Data Total Class Data Total 

  C 918 58   S   204  13 

  M 473 30   Cgs   408  30 

Cga 857 54   G  588  37 

  A 772 49  Cg 1122  70 

  A1 1079 68   B  549  35 

  S1 715 45    L 2205 138 

Table 1. Data description for Isolated Training 
 

Results on MAR203 after Isolated Training in sequences 
of each class extracted from MAR402, are presented in 
Table 2: column "C" is the class (lithology) now numbered 
from 1 to 12 (designing respectively C, M, Gga, A, A1, S1, 
S, Ggs, G, Cg, B, L). Column "S" is the number of states 
in the HMM, column "M" is the number of gaussian 
densities (mixture components) per state of the HMM, 
column "Data" gives the number of logs per class in 
MAR203, column "LL" is the number of training iterations 
made, column "E" is the value of constant c in formula 
(17) to stop training by the Baum-Welch algorithm, and 
column "%" is the percentage of logs correctly classified in 
MAR203.  

According to the number of sequences per class, the 
criterion to stop training uses a different value of constant 
c (10-3 or 10-4). Different tests were made changing the 
number of gaussians (M), but we present only the results 
with M=1, as they are the best. Results are globally good, 
they vary from 44.44% to 96.39%.  

This can be explained by the fact that there are not 
enough isolated sequences to train the HMMs in the 
configuration in which emission probabilities are mixtures 
of gaussian densities. Indeed, this framework implies 
much more parameters to estimate (several covariance 
matrices, several means, mixture coefficients). It is why in 

the following (Sections 4.2 and 4.3), all the experiments 
are performed in the framework of one gaussian density 
per state of the HMMs.  

 

C S M Data LL E % 

1 3 1 305 25 e-4 96.39 

2 2 1 178 23 e-3 81.46 

3 3 1 338 15 e-4 55.62 

4 2 1 1354 18 e-4 91.06 

5 2 1 797 26 e-4 64.74 

6 3 1 369 28 e-4 44.44 

7 2 1 349 29 e-4 65.98 

8 3 1 391 24 e-4 61.68 

9 3 1 549 17 e-4 63.81 

10 3 1 431 24 e-4 63.81 

11 3 1 130 22 e-4 66..92 

12 3 1 399 12 e-4 74.69 

Table 2 . Test results for M=1 after Isolated Training 
 

4.2 Testing after Contextual Training with HMMs 
initialized by Isolated Training 
In this framework, transition probabilities between different 
lithology HMMs are introduced in the computation of the 
optimal path by the Viterbi algorithm. These transition 
probabilities are fixed during training and testing; they are 
estimated on the hole MAR402 by relative frequencies. 
Their role is to favour some inter-model transitions, 
according to what is observed in MAR402.  

For Contextual Training, we used sequences of length 
T≤25 of MAR402. When training is stopped according to 
the performance criterion per HMM (stabilization of the 
percentage of correct classification per class), 
convergence is reached after 39 epochs (iterations of the 
training database), and after 51 epochs for the criterion of 
likelihood stabilization. 

Table 3 shows results on MAR203 for both convergence 
criteria: column "Q" gives in fact the values in which the 
performance becomes stable in the "training hole" 
(MAR402), and column "%Q" gives the corresponding 
results in the "test hole" (MAR203). Analogously, column 
"LL" gives the average value of the log-likelihood per class 
at convergence (when this value becomes stable), and 
column "%LL" gives the corresponding results in the "test 
hole" (MAR203).  

We first notice that the percentage of correct classification 
is improved in half of the lithologies (classes 2,3,6,7,8,11) 
compared to the results obtained after Isolated Training. 



 

The other lithologies (classes 1, 4, 5, 9, 10, 12) for which 
results are degraded, are very mixtured in the drilling 
holes, that is a single or very few observations (logs) of 
such lithologies are often found between other lithologies. 
For this reason, only few sequences of such lithologies 
have a significant length during Contextual Training. This 
is particularly visible for lithology 12 (L), for which plenty of 
data are available, but such data are spread in the drilling 
holes at most measures' levels. Indeed, this lithology, of 
vegetal origin, is very weak and tends to get damaged 
during the data acquisition process, spreading itself at 
most measures' levels.  

In other words, Contextual Training is effective when 
subsequences of each lithology appearing in the context 
of other classes are of significant length.  

 

C S M Data   Q %Q LL %LL 

1 3 1 305 70.26 80.65 -6.82 80.65 

2 2 1 178 74.20 91.01 -75.75 91.01 

3 3 1 338 66.27 57.10 1.73 57.98 

4 2 1 1354 84.45 62.62 -5.42 62.62 

5 2 1 797 59.87 24.09 -29.24 24.09 

6 3 1 369 64.19 55.55 -75.11 55.55 

7 2 1 349 71.56 86.53 -27.35 86.53 

8 3 1 391 67.08 44.75 -5.6 45.01 

9 3 1 549 59.86 37.34 26.84 37.34 

10 3 1 431 72.90 61.71 -18.63 59.62 

11 3 1 130 91.43 93.84 -14.5 93.84 

12 3 1 399 39.81 67.91 -52.73 67.91 

Table 3. Test after Contextual Training when HMMs 
are initialized by Isolated Training 
 

4.3 Testing after only Contextual Training 
In this framework, as detailed in Section 3.4, the training 
database is used once (one epoch) to initialize the HMMs, 
using the "correct path" instead of the Viterbi path. With 
this "correct segmentation" of the sequences of the 
training database, we obtain a first estimation of the 
HMMs' parameters by the Segmental K-Means algorithm. 
Our goal is to evaluate the influence of this initialization, 
done in a contextual way, when followed by Contextual 
Training. Results are given in Table 5. 48 iterations 
(epochs) of the training database were necessary to stop 
training, for both convergence criteria (described in 
Section 3.5). In both cases, results are the same.  

Table 4 shows that for 2/3 of the classes, the results are 
improved compared to those presented in Table 3. Also, 
the degradation of class 12 (L) is confirmed after this 
contextual initialization. Compared to Isolated Training, 
two classes are strongly improved: class 2 (M) and class 

11 (B), and some classes like classes 6 and 7 (S1 and S), 
and class 10 (Cg) are globally unchanged. This may 
reveal that the latter are quite difficult to model.  

 

C S M Data   Q %Q   LL %LL 

1 3 1 305 83.44 90.16 -0.35 90.16 

2 2 1 178 73.36 93.82 -67.75 93.82 

3 3 1 338 45.85 38.46 -88.54 38.46 

4 2 1 1354 87.30 64.69 -13.16 64.69 

5 2 1 797 57.92 39.14 -43.12 39.14 

6 3 1 369 68.11 44.44 -97.74 44.44 

7 2 1 349 61.76 60.74 -6.20 60.74 

8 3 1 391 56.45 49.82 -3.32 49.82 

9 3 1 549 32.82 38.25 -839.9 38.25 

10 3 1 431 72.37 62.87 -23.26 62.87 

11 3 1 130 91.07 97.69 -10.15 97.69 

12 3 1 399 35.60 58.39 -64.13 58.39 

Table 4. Test after only Contextual Training 

 

5. CONCLUSIONS 

We have proposed an original approach based on HMMs 
to identify lithologies in a drilling hole. This statistical 
approach considers a sequence of logs measured in a 
drilling hole as a time serie. This permits to introduce 
some contextual information present in the sequence of 
logs when estimating the parameters of the statistical 
models of each lithology. A lithology is modeled by a 
gaussian ergodic HMM and trained in three different ways: 
Isolated Training (in which data are separated per 
lithology for training), Contextual Training after initializing 
the HMMs by means of Isolated Training, and only 
Contextual Training in which the HMMs are even 
initialized in a contextual way. The last paradigm improves 
results for 2/3 of the classes relatively to the second one. 
Some classes are difficult to model in any of such 
paradigms: class 6 and 7 (S1 and S), and class 10 (Cg). 
Also, we noticed that Contextual Training is uneffective for 
those classes whose sequences are not of significant 
length when taken in the context of other lithologies. For 
that reason, only two classes show the real interest of 
Contextual Training relatively to Isolated Training: class 2 
(M) and class 11 (B). On the other hand, class 12 (L) 
shows another limit of our approach: this class appears in 
the context of all the others because it is spread at all the 
levels of the drilling holes. Results for this class get 
degraded with contextual training, and when the 
initialization is also done contextually, they are even more 
degraded.  

These preliminary tests show that, while in general the 
introduction of context improves the classification 



 

accuracy, one has to be careful with some classes with a 
very changing context. Our further work will explore this 
aspect in more details and propose some efficient 
strategy to cope with this phenomenon. 
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