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1.  INTRODUCTION 
 
Many excellent forecasting models are currently 
available for domestic U.S. and international sites.  
The models each have inherent strengths and 
weaknesses.  By combining the forecasts using 
adaptive, confidence-weighted fusion, 
improvements in forecasts have been made in 
long- and short-term forecasting systems for a 
variety of applications.  
 
The method for adaptive data fusion was chosen 
for its low computational complexity, accuracy, 
flexibility, numerical stability, and ability to use 
confidence values associated with the input 
forecasts.  These characteristics are 
demonstrated here through comparisons with 
other data fusion techniques on forecasts of 
meteorological data. 
 
The techniques chosen to compare with the 
adaptive data fusion (ADF) algorithm are the 
Newbold-Granger method (N-G) (see Newbold 
(1974)), nonnegative restricted least squares 
(NRLS) (see Aksu (1992), for example), and 
principal components regression (PCR) (see 
Jackson (1991), for example).   The adaptive data 
fusion algorithm was compared to several other 
algorithms in earlier studies (see Young (2002)), 
and the algorithms presented here were found to 
be the most promising for the meteorological 
problem presented. These algorithms also provide 
a good sampling of the types of algorithms 
available for this problem.  The N-G method is a 
computationally simple algorithm that uses the 
error statistics.  The NRLS is a least squares 
algorithm, like the ADF algorithm, but uses a set 
window of data, instead of iterative adaptation.  
PCR is a linear algebraic algorithm that also uses 
a window of data.    
 
The algorithms are evaluated over a range of 
tuning parameters and a variety of data.  The 
ease to which the algorithm can be turned for a 
data set is an important criterion.   The forecast 

models produce a large number of variables for a 
large number of sites and forecast times.   Some 
sites and forecast times have a large amount of 
training data, and others have very little. For this 
study, maximum temperature and wind speed are 
the two meteorological variables examined.  For 
both variables, the forecast for one day and the 
forecast for 7 days in the future are examined.  
The data was taken over the period of January 1, 
2002 to August 31, 2002 for eighteen domestic 
sites.   The meteorological models used were the 
AVN, ETA, MRF and NGM.  Climatology is also 
used in the fusion.  Truth was obtained from 
synoptic measurements.    Confidence values are 
not used in this study but are used in the systems 
that use the ADF algorithm. 
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2.  ALGORITHMS 
 
The fused forecast is created by summing the 
weighted, bias corrected input forecasts.  For 
variable, f, forecast, Xf, input forecasts, Xjf, with 
associated confidences, cjf, weights, wjf, and 
biases, bjf, the equation is 
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To simplify the analyses, the confidences are 
assumed to be one for all of the data in this study.   
Only the ADF algorithm uses the denominator in 
the weight determination formula.  In all other 
algorithms, the denominator is assumed to be one.  
The advantage in having the denominator is that 
the weights do not unduly bias the results when 
input forecasts are missing. 
 
The best weights and biases for a given set of 
data depends on the criteria for success.  In this 
study, root mean-squared error (RMSE) is used to 
evaluate the results.   The algorithms all have the 
goal of minimizing RMSE for stationary systems.   
The data used in this study is typical of weather 
forecast data in its non-stationarity.   
 
 



2.1  Adaptive Data Fusion (ADF) 
 
The ADF algorithm is based on the gradient 
decent of the confidence-weighted error, with the 
weights restricted to summing to one.  The 
algorithm is loosely based on the fuzzy standard 
additive model (SAM) of Bart Kosko (1997). The 
following Lyapunov function is used with the truth 
for the forecast, XTf, and its confidence, cTf, and 
the bias change assumed to be irrelevant to the 
weight change,  
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with step size, η.  The weight change simplifies to 
a formula that is proportional to both the error and 
the difference between the bias-adjusted input 
forecast and the fused forecast, as well as the 
confidence values of all of the forecasts, 
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      The N-G algorithm is a simple algorithm for 
assigning the weights according to the relative 
errors observed for the input forecasts for a set 
period in the past (window, ν).  No bias term is 
used.  The weight is the inverse of the sum over 
the window of the errors for the input forecast, 
normalized by the sum of the inverses for all of 
the input forecasts,  

 
The last term arises from the normalization of the 
fused forecast by the weighted confidences.   
After the weight change has been applied, the 
weights are re-normalized so that they sum to one, 
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The biases are updated using the same Lyapunov 
function with the weight change assumed to be 
irrelevant, 
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with bias step size, ηb.  The bias change simplifies 
to a formula that is proportional to the error in the 
input forecast, 
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The biases become estimates of the error in the 
input modules and the weights are indicative of 
whether the bias-adjusted input module tends to 
over- or under-estimate the forecast.   
 

Note that the equations for the weight and bias 
change are very simple computationally.  The 
order of the algorithm is the order of the number 
of input modules.  The ADF algorithm is tuned by 
optimizing the RMSE for the weight and bias step 
sizes, η and ηb.    
 
The systems that are deployed have a complex 
set of checks that provide the algorithm with more 
stability than the simplified version used in this 
analysis, without adding significant complexity. 
 
Missing data is handled gracefully by the ADF 
algorithm.  If all of the input forecasts are missing, 
no adaptation takes place.  In the operational 
system, weights are degraded when single input 
forecasts are missing.  For this study, all inputs 
were present for all time steps. 
 
 
2.2.  Newbold-Granger (N-G) 
 

 

( )

( )

11

11

T

Tf jf
t T

jf
T

Tf kf
k t T

X X
w

X X

ν

ν

−−

= −
−−

= −

  −  
  =
  −  
  

∑

∑ ∑
             7) 

 
The input module with the lowest error during the 
window period receives the largest weight.  The 
weights sum to one.   
 
The complexity of the N-G algorithm is on the 
order of the window size times the number of 
input modules, which is relatively low.  The N-G 
algorithm is tuned by adjusting the size of the 
window to minimize RMSE.   
 
Missing data create a problem for the algorithm.  If 
the window is large enough, the probability of not 
having enough data becomes small. 
 



 
Figure 1: RMSE for maximum temperature 

forecast at day one.  The range in RMSE is from 
the lowest to highest RMSE for the 18 sites with 

the parameters optimized. 
 
 
 
2.3.  Nonnegative Restricted Least Squares 

(NRLS) 
 
The NRLS method is a more comprehensive 
algorithm, which uses a window of forecasts to 
find the least squares best solution for positive 
weights using singular value decomposition.   Let 
X be a matrix formed by the window of previous 
input forecasts, and the vector y be a vector 
formed by the corresponding truth values.   The 
best solution  for the weights in the least squares 
sense is the product of the pseudo-inverse of the 
input matrix and the truth vector,  
 
 w = (X’X)-1 X’y                          8) 
 
By successively adjusting the weights by a 
Lagrangian factor, the weights can be forced to be 
non-negative.  NRLS is a boundary method for 
searching for the best weight, as opposed to ADF, 
which is an interior method.  
 
The complexity of NRLS is order of the cube of 
size of the window of inputs, which is much higher 
than the previous two methods.  The only 
parameter that is tuned is the size of the window.  
Note that not all X’s will produce weights due to 
numerical problems with this method.  For this 
study, those results are ignored, but the situation 
must be addressed in operational systems. 
 

 
Figure 2: RMSE for maximum temperature 

forecast at day seven.  The range in RMSE is 
from the lowest to highest RMSE for the 18 sites 

with the parameters optimized. 
 
 

 
2.4.   Principal Component Regression (PCR) 
 
 
The PCR method is used to provide more 
numerical stability than the direct least squares 
methods at the expense of considerably higher 
computational complexity.   First, the principal 
components , D, are determined from X, then the 
inputs are projected onto those principal 
components.  The weight is then computed from 
the product of the pseudo-inverse of the projected 
matrix, T, and the truth, 
 
 w = (T’T)-1 T’y, where T = XD                 9) 
 
The complexity of PCR depends on the number of 
principal components used, but is generally higher 
than for NRLS.  If only a few are used, then the 
pseudo inverse of T is less computationally 
expensive, than it would be if more components 
are used.  The weight vector estimated using 
fewer principal components may not produce as 
low RMSE as a weight vector created with more 
principal components.    
 
Both the number of principal components and the 
size of the window are tuned for PCR.  Although 
PCR is more numerically stable than NRLS, the 
method still fails on some data, which is 
overlooked in this study. 



 
Figure 3: RMSE for wind speed forecast at day 
one. The range in RMSE is from the lowest to 

highest RMSE for the 18 sites with the parameters 
optimized. 

 
 
 
3. TUNING 
 
The results of the tuning of the four algorithms are 
shown in figures 1 - 4.  Four different data sets 
were used from the time period from January 1, 
2002 to August 31, 2002.  The four variables are 
maximum temperature and wind speed forecasts 
for one day and seven days. Eighteen domestic 
sites were used in each data set.   The one day 
forecasts used about 205 forecasts per site. The 
seven day forecasts used only about 94 forecasts 
per site. Bad data was removed from the data 
sets, and not all dates were available for all sites, 
which caused the number of data points to vary.  
The size of the data sets should not dramatically 
affect the statistics of the data, however.  Eight 
models were used in the day one forecast (00Z 
and 12Z AVN Dynamic-MOS, 00Z and 12Z ETA 
DMOS, MEX-MOS, 00Z and 12Z NGM-MOS and 
climatology).  The day seven forecasts only use 
three models (MRF DMOS, MEX-MOS and 
climatology) for maximum temperature and two 
models for wind speed (MRF DMOS and 
climatology).    The RMSE for the MRF DMOS 
model is included for comparison purposes.  For 
the day one forecasts, the NGM-MOS RMSE is 
also included.  For the day seven temperature, 
MEX-MOS RMSE is included. 
 
The figures show the RMSE for each method 
calculated using the best overall parameters and 
the best parameters at each site.  The spread in 
RMSE over the sites gives an indication of the  

 
Figure 4: RMSE for wind speed forecast at day 
seven. The range in RMSE is from the lowest to 

highest RMSE for the 18 sites with the parameters 
optimized. 

 
 
 
sensitivity of the method to parameter values.  
Note that the ADF method is able to consistently 
produce the lowest RMSE and the lowest spread 
in the RMSE, with the only exception being the 
slightly smaller spread in RMSE for the N-G 
method for maximum temperature.    
 
 
ADF improves on MRF DMOS by 22% for 
maximum temperature on day one and 23% for 
day seven.  ADF improves on NGM-MOS by 25% 
for maximum temperature on day one and 22% 
for wind speed for day one.   For wind speed, ADF 
improves on MRF by 16% on day one and 3% on 
day seven.  ADF improves on MEX-MOS by 22% 
for maximum temperature for day seven.   Less 
improvement is seen for the day seven wind 
speed because only MRF DMOS and climatology 
are fused. 
 
The simpler methods (ADF and N-G) tended to 
outperform the more computationally expensive 
methods, even when all methods are optimized.  
This indicates the interior methods are preferable 
for these data sets and there is no need for the 
additional computational complexity.   
 
4. ANALYSIS OF ADF 
 
The ADF method is appropriate for the forecast 
model data fusion task for its ability to yield 
interesting insights, in addition to providing 
accurate forecasts.  The individual forecast model  



 
Figure 5: Bias adjustments for maximum 

temperature forecast at day seven for Los Angles 
for times from January 1, 2002 to August 31, 2002. 
 
 
 
biases give an indication of the relative biases of 
the models.  The weights indicate the reliability of 
the models.  Once the biases reach a good value, 
the weight magnitude will tend to reflect the 
reliability of the model. 
 
The evolution of a set of weights and biases for a 
single site, variable and lead time (Los Angles, CA 
maximum temperature, day seven) are shown in 
figures 5 and 6.   The step sizes are the optimized 
values.   The biases and weights for the same 
variable and time period for Goodland, KS are 
shown in figures 7 and 8 with the optimal step 
sizes.  LA had the second lowest overall RMSE, 
after Phoenix, and Goodland had the highest 
RMSE for this data set. 
 
The fluctuations in the biases indicate that there 
may be seasonal biases in the models, 
particularly in the summer months.  The lowest 
weight is associated with MRF MOS in LA, except 
in the summer.  The weights for Goodland show 
the opposite phenomena for the weights and 
much higher biases.  The variation in the weights 
and biases for the different cities is very large, as 
is expected.  The optimal learning rates vary in 
the same way. 
 
5. DISCUSSION 
 
The large amount of data that is processed in the 
model fusion applications examined here requires 
a simple yet accurate weighting and biasing 
algorithm.   The additional problems of model  

 
Figure 6: Weights for maximum temperature 

forecast at day seven for Los Angles for times 
from January 1, 2002 to August 31, 2002. 

  
 
 
changes, missing data and model additions 
require the algorithm to have even more flexibility 
than this study has directly addressed.   The ADF 
has proven its ability to handle these requirements 
while producing results that are close to the 
results of the NRLS and PCR algorithms.   In fact, 
for the data sets examined, the ADF algorithm 
outperformed the competing algorithms with lower 
computational complexity and more numerical 
robustness.  Tuning the ADF’s parameters is fairly 
simple, which allows even more adaptation of the 
system as it and its constituent models evolve.  In 
addition to accuracy and ease of tuning, the ADF 
model also provides insight into the model biases 
and relative consistency. 
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Figure 7: Bias adjustments for maximum 
temperature forecast at day seven for Goodland, 
KS for times from January 1, 2002 to August 31, 

2002. 
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Figure 8: Weights for maximum temperature 
forecast at day seven for Goodland, KS for times 

from January 1, 2002 to August 31, 2002. 
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