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1 INTRODUCTION

Accurate estimation of soil moisture is essential
for the successful simulations of boundary layer evolu-
tion (Golaz et al. 2001), mesoscale circulations (Fast
and McCorkle 1991), and convection (Clark and Arritt
1995; Gallus and Segal 2000). However, since soil mois-
ture observations are insufficient for direct real-time ini-
tialization, many alternative methods and techniques are
proposed and tested for retrieval of soil moisture. Among
them are the direct use of passive microwave remotely
sensed data (Vinnikov et al., 1999) or assimilating into
the land data assimilation system (LDAS) (Burke et al.
2001), and assimilation of satellite-derived infrared heat-
ing rates into a numerical model (Wetzel et al. 1984;
McNider et al. 1994; Jones et al. 1998a,b) or combining
satellite-derived infrared skin temperature and vegetation
index (Gillies and Carlson, 1995).

The low resolution, passive microwave data are
not very useful for cloud and meso- scales applications
because of its large footprint (from � 25 km at 37 GHz
to 150 km at 6.6 GHz). Data from these satellites are
not ideal for measuring soil moisture in situations where
there is significant vegetation cover (Owe et al. 1999).
The National Oceanic and Atmospheric Administration’s
(NOAA) Advanced Very High Resolution Radiometer
(AVHRR) and Geostationary Operational Environmental
Satellite (GOES) Visible-Infrared Spin Scan Radiometer
(VISSR) provide extensive spatial and temporal cover-
age. In addition, AVHRR data can be used to retrieve
various geophysical parameters such as IR skin tempera-
ture and vegetation index closely related to soil moisture
(Leese et al. 2001).

The purpose of this study is to develop a new
methodology capable of estimate soil moisture from re-
motely sensed IR data with sufficient spatial and tempo-
ral resolution. The new methodology is an artificial neu-
ral network (ANN) based technique, adapted from the
ANN model developed for precipitation estimation based
on infrared (IR) satellite data (Hsu et al. 1997; Hsu et al.
1999; Sorooshian et al. 2000).
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Artificial neural network provides a promising
alternative to meteorological applications that the char-
acteristics of the processes are difficult to describe using
physical equations. Although there is no known physical
equations relating soil moisture with other meteorologi-
cal and surface variables, variables such as skin temper-
ature, precipitation, and vegetation index are found to be
highly correlated to the soil water content (Gillies and
Carson 1995).

Using IR heating rate, normalized difference
vegetation index (NDVI), and surface precipitation as the
primary inputs to the ANN model, we examined the ap-
plicability and potentials of the ANN in soil moisture es-
timation using data from LDAS outputs. The calibration
and validation are based on two months of data over the
continental United States. Good agreement is demon-
strated between the ANN model estimate and the LDAS
soil moisture values. Soil moisture information from
LDAS model output is used as the target data to adjust
the ANN parameters.

2 ARTIFICIAL NEURAL NETWORKS

The artificial neural network (ANN) model used
in this study is developed by a group of scientists in the
University of Arizona. Readers are referred to Hsu et
al. (1997,1999) for detailed description, evaluation, and
discussion on the overall performance of the model. A
brief description is given below.

The architecture of the neural network is a
modified Counter Propagation Network (CPN) (Hecht-
Nielsen 1988). The CPN structure consists of two func-
tional components. Fig. 1 shows the schematic diagram
of the ANN model. The input-hidden component de-
tects and classifies features and nonlinearity in the input
data, and then maps them into clusters by using a self-
organizing feature map (SOFM) algorithm. The SOFM
is trained through an unsupervised learning using only
the input data in the training process.

The hidden-output component performs linear
mapping (LM) that relates the classified inputs into the
output variables. The linear mapping algorithm is trained
using a negative gradient algorithm in which the mean
square error between the ANN output and the target data



is minimized. Once the network error has decreased to
less than a specified threshold value, the network has
converged and is considered to be trained.

The two components are trained separately. Ide-
ally, one would use a data set that contains seasonal and
topographic changes to train the ANN model. When
there is only limited number of input data, the ANN
model allows continuously training, namely sequential
training, if additional observations become available af-
ter the model is initially trained. The training process is
also considered as the model calibration, and the sequen-
tial training is treated as the model validation, testing,
or simulation. During the sequential training, the model
parameters are adjusted and the model output will be im-
proved.

3 SELECTION OF THE INPUT VARIABLES

A neural network learns the input-output rela-
tionship through a training process. One of the criti-
cal issues in training the ANN model is to select input
variables that are highly correlated to the soil moisture.
Previous studies have showed good correlation between
the soil moisture and the infrared skin temperature and a
normalized difference vegetation index (NDVI) (Gillies
and Carlson 1995), and the infrared heating rate and the
antecedent precipitation index (API) (Wetzel and Wood-
ward 1987). These variables are sought from two inde-
pendent data sources.

Although satellite data are readily available, it
is still very time consuming to process a huge amount
of satellite data. To focus our attention on understand-
ing and evaluation of the ANN model without spending
a large effort to deal with data processing, we obtained
the skin temperature, surface precipitation, and root zone
soil moisture from the available LDAS data (available
online: http://ldas.gsfc.nasa.gov/), and used the LDAS
data as the ”ground truth” for soil moisture. The LDAS
data contains the hourly gridded data over the US (125W
– 67W, 25N – 53N) with the resolution of 0.125o by
0.125o lat-long.

The NDVI data are composites biweekly grid-
ded data over the US (128.52W – 75.41W, 22.48N –
48.4N) from U.S Geological Survey’s Earth Resources
Observations Systems (USGS EROS) data center. This
dataset is projected and linearly interpolated onto the
LDAS data grid. The NDVI data provides seasonal vari-
ations in the vegetation pattern.

4 EVALUATION OF TRAINING RESULTS

Following Gillies and Carlson (1995), the ANN
model is first trained with the normalized infrared skin

temperature (T1
�
) and NDVI (N

�
) as the input variables

(see Table 1). Note that the definition of N
�

in this
study is slightly different from that of Gillies and Carl-
son (1995) for simplicity. N

�
ranges from 0 to 1. To

select the input variables that produce the best correla-
tion, several different input variables are tested (Table 1).
Correlation coefficients between the input variables and
soil moisture are calculated (Table 2). The performance
of the ANN model is evaluated by examining the corre-
lation between the ANN model estimate and LDAS soil
moisture after initial training (Table 3).

EXP Input Variables

exp1 N
�

=
�
NDV I � NDV Imin ��

NDV Imax � NDVImin � , T1
�
=

�
Ts � Ta �
Rnet

exp2 N
�
, T2

�
=Ts/Rnet

exp3 N
�
, T3

�
=Ts

exp4 N
�
, T4

�
=(Tsmax-Tsmin)/(0.5*(Tsmax+Tsmin))

exp5 N
�
, T4

�
, DRR

exp6 N
�
, T4

�
, ARR

Table 1: Ts is the infrared skin temperature, Ta is the air
temperature measured at 2m above surface, Rnet is the net
radiative fluxes, Tsmax and Tsmin are calculated over 6 h
time period during the morning hours, DRR is averaged
daily rain, and ARR is the previous 30-day accumulated
rain.

Input variables Corr(input,sm)
T1

�
0.0155

T2
�

-0.2374
T3

�
-0.1079

T4
�

-0.5449
N

�
0.4639

DRR 0.3068
ARR 0.6706

Table 2: Correlation coefficient between input variables
and soil moisture. The second column lists the corre-
lation coefficient between the corresponding input vari-
ables and soil moisture.

Data from June 1998 are used to train the ANN
model. As shown in Table 2, the correlation coefficients
are low for T1

�
, T2

�
, and T3

�
, but increased (negatively)

significantly when T1
�
, T2

�
, and T3

�
used in exp1, exp2,

and exp3, respectively, are replaced with the normalized
heating rate (T4

�
) in exp4. The daily rain (DRR) or the

previous 30-day accumulated rain (ARR) is added as the
third input variable. The correlation coefficient between
soil moisture and the accumulated rain is more than twice
of that between the soil moisture and daily rain. The
statistical results (Table 3) of the initial training show a
steady decrease in RMSE as the correlation between the



ANN model estimate and the LDAS soil moisture im-
proves. Given the results in Table 2 and 3, the input vari-
ables used in exp6 are clearly the winner. With this level
of correlation, useful soil moisture data are obtainable
from the ANN model estimate.

EXP/Stat CORR RMSE BIAS
exp1 0.4929 0.07740 -0.12289e-5
exp2 0.5513 0.07423 0.45050e-6
exp3 0.6084 0.07061 -0.40703e-6
exp4 0.6052 0.07081 0.26237e-6
exp5 0.6140 0.07021 -0.34857e-6
exp6 0.7347 0.06038 -0.39903e-6

Table 3: Statistics of training results

5 ANN SOIL MOISTURE ESTIMATION RE-
SULTS

The trained ANN was then applied to indepen-
dent cases to see if it could produce the soil moisture
close to the observations. The performance of the ANN
model in soil moisture estimation is tested with data from
July 1998.

Correlations between the ANN model estimate
and LDAS soil moisture (Fig. 1a) are all higher than
those training results shown, respectively, in Table 3,
while the root mean square error (RMSE, Fig. 1b) are
lower after the sequential training with the data from
July 1998. The correlation is as high as 0.879 for the
exp6. The positive bias (model estimate minus the obser-
vational values) indicates that the ANN model is overes-
timating the soil moisture (Fig. 1c). Comparison among
the three experiments (Fig. 1) shows that the exp6 pro-
duces the best correlation and least RMSE and bias.

Spatial distributions from testing results for 1
July 1998 is plotted along with the observation (LDAS
data) in Fig. 2 to find out where the model has missed.
As indicated in the error plot (Fig. 2c), the model overes-
timated the soil moisture the most in the western region
of Nebraska. There is a generally overestimate of the
soil moisture in the dryer regions and underestimate in
the moister regions by the model.

Based on the soil moisture plot (Fig. 2a) the
model is applied to three different regions ranging from
dry to moist, and the results are plotted in Fig. 3. The
three regions are New Mexico (dry), mid-west (moist),
and Nebraska which is the most overestimated region by
the model. The averaging volumetric soil moisture is be-
low 0.2 in New Mexico (Fig. 3a), and close to 0.4 in the
mid-west (36N – 41N, 90W – 85W). The overestimation
(3a) and underestimation (3c) are small when comparing
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Figure 1: Statistical results of the ANN soil moisture es-
timation from July 1998. Variables are (a) correlation
between the ANN model estimate and LDAS soil mois-
ture, (b) Root mean square error, and (c) bias defined
as the difference between the model estimate and LDAS
soil moisture with line types as labeled. LDAS data is
used as the ”ground truth” for soil moisture in this study.

with the results of Nebraska. When all the data points
(Fig. 3d) are used to compute the correlation coefficient
between the estimated and observed soil moisture, R is
much higher (0.879) whereas R for individual regions is
much lower as labeled in each panel. These results show
that sufficient amount of data are necessary to adequately
represent the full range of soil moisture distributions.

6 SUMMARY AND DISCUSSION

A neural network based methodology is tested
in soil moisture estimation. We showed that the ANN
model can be trained to retrieve soil moisture informa-
tion. The biggest challenge is whether the ANN model
is capable of retrieving soil moisture directly from re-
motely sensed data since the LDAS is still model output.
If it can, then ANN has the following advantages over
LDAS:



� Soil moisture retrieval is not restricted to the ETA
model domain.

� Resolution can be as high as the input data (skin
temperature, precipitation).

� Soil moisture can be retrieved for historical peri-
ods as long as the input data records.

The research is ongoing, and more results will
be presented at the conference, and appear in the publi-
cation (Jiang and Cotton, 2002).
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Figure 2: Statistical results of the ANN soil moisture es-
timation from July 1998. Variables are (a) correlation
between the ANN model estimate and LDAS soil mois-
ture, (b) Root mean square error, and (c) bias defined
as the difference between the model estimate and LDAS
soil moisture with line types as labeled. LDAS data is
used as the ”ground truth” for soil moisture in this study.
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Figure 3: Scatter plots of estimated and observed soil
moisture for different regions as labeled for 1 July 1998.
Solid line represents points where the estimated soil
moisture equals to that of observed.


