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1. INTRODUCTION

The analysis of times series data plays a fun-
damental role in science and engineering. An
important analysis step is the identification and
classification of various features in the data. Qual-
ity control can be viewed as a subclass of general
feature identification and classification, for exam-
ple, differentiating between a true signal and a
contaminating signal. Many algorithms exist for
the quality control of time series data, such as
Fourier or wavelet analysis, as well as robust and
standard statistics. (Abraham and Ledolter 1983,
Priestly, 1981 and Barnett and Lewis, 1977). How-
ever these algorithms are applicable only when
certain assumptions are satisfied, such as station-
arity, and a relative few number of outlier (less
than 50% of the data). Unfortunately there are
times when an instrument is failing and the
assumptions of the standard methods are violated,
and hence are not applicable. However, a quality
indicator is still needed. Typically the image pro-
cessing of a human is used to identify and mitigate
failure mode data. Human analysts are adept at
feature identification and classification, neverthe-
less in many applications it is desired to have an
automated algorithm that performs this role. In this
paper, a machine-intelligent algorithm that mimics
the feature classification and identification pro-
cessing of the human analyst is presented and
applied to the quality control of time series data. In
cases where there are a large number of outliers -
a situation that is problematic to most algorithms -
this algorithm is able to classify the desired signal
as well as the outliers.

For example, consider the time series in Fig-
ure 1 consisting of anemometer measurements of
wind speed in ms-1 as a function of time in sec-
onds. Aside from a few isolated outliers, it is
straightforward to see that this is good quality
data, and that most quality control algorithms
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would not have difficulty in diagnosing the outliers.
On the other hand, the data in Figure 2 is certainly
more complex, showing similar regions of good
data as with the previous figure, but intermixed

Figure 1. Nominal anemometer time series data. The
vertical axis is wind speed in m s-1. The horizontal axis
is time in seconds.

Figure 2. A nearby anemometer time series in a failure
mode. Here a nut holding the anemometer head has
worked loose.

Figure 3. Data from a spinning anemometer. The verti-
cal axis is wind direction measured in degrees from
north in a clockwise direction, the horizontal axis is time
in seconds.

Figure 4. Data from an anemometer in a failure mode
caused by a bad transistor.



with numerous outliers. This data is from an ane-
mometer located three meters from the one whose
data is shown in Figure 1, and from the same time
period. In this situation, standard methods might
work well on certain segments of this time series,
but other sections -- such as between 800 and
1000 seconds -- might cause problems. However,
except for some of the points close to the “good
data,” a human analyst would not have much diffi-
culty in discerning the good from the bad data (in
fact, this anemometer was having a mechanical
failure where the strong winds vibrated, then loos-
ened, the nuts holding the anemometer in place).

Consider the additional cases shown in Fig-
ure 3 and Figure 4. From video footage, it has
been observed that certain wind frequencies can
excite normal modes of this type of anemometer’s
wind direction head and can cause the device to
spin uncontrollably. Data from such a case can be
seen in Figure 3, where the vertical axis is wind
direction measured in a clockwise direction from
North. The horizontal axis is again time measured
in seconds. Between about 500 seconds and 1000
seconds the wind direction measuring device is
spinning and the data becomes essentially a ran-
dom sample of a uniform distribution between
about 50 degrees to 360 degrees. The true wind
direction is seen intermittently at about 225
degrees, which is in general agreement with the
value from another nearby anemometer. Figure 4
shows the wind direction at another time distinct
from that in Figure 3; the true wind direction is
around 40 degrees. Notice the suspicious streaks
in the time series data near 200 degrees, as well
as other spurious data points. Again standard time
series algorithms would have a difficult time with
these two examples, however it is straight forward
for the human analyst to identify both the suspect
and good data. This illustrates another aspect of
the time series problem beyond identifying points
as outliers, that is, classifying the nature of the
outliers.

It is difficult to create a single algorithm that
can detect and identify many different types of
data quality problems. Given that the human ana-
lyst is able to quality control data in a pathological
case, motivated the development of a multi-com-
ponent, fuzzy logic machine intelligent algorithm,
the Intelligent Outlier Detection Algorithm (IODA).
IODA incorporates cluster analysis, fuzzy image
processing, local and global analysis, correlation
structure, as well as a priori knowledge when
available, and returns a quality control index (con-
fidence value) between 0 and 1 that indicates the
reliability of the data. In this paper the techniques
to accomplish such processing are given in the
context of anemometer time series data. It is
important to note that these techniques could be
modified to accommodate time series data from
other instruments with different failure processes,
or failure modes.

2. FUZZY IMAGE PROCESSING

When creating a fuzzy logic algorithm, the
characteristics and rules a human expert might
use to partition the data (Zimmerman, 1996) into
a classification set C must be determined. Various
tests are devised to ascertain whether a certain
datum should be in C. The result of each test are
transformed into values between 0 and 1 by mem-
bership functions. A membership function value
near 1 for some test T is interpreted to mean that
the test indicated that it was likely that the datum
should be classified as in C, and a value near zero
would indicate the datum is not likely to belong to
C. These membership functions are combined in
many different ways by fuzzy logic rules to obtain
a final membership function. A threshold is set
and the points with final membership values above
this threshold are defined to be in C. If a threshold
is not used the value of the combined membership
function may be used to indicate the degree to
which the datum belongs to C (a confidence
value). This final membership function is called
the fuzzy set C since the membership value indi-
cates the degree to which a datum belongs to C.
This methodology allows for a multiplicity of tests
and membership functions. In the case of fuzzy
image processing, a membership value is
assigned to each point from an analysis of an
image (Chi, Hong and Tuan, 1996). This value can
be thought of as a height and by interpolation a
surface. See for example Figure 6 where a cold
(blue color) represents a higher height in the sur-
face.

3. INTELLIGENT OUTLIER DETECTION ALGO-
RITHM (IODA)

Suppose the data from Figure 2 is broken into
overlapping subregions using a sequence of run-
ning windows. For each data window, an estimate
of the probability density function (i.e. a normal-
ized histogram) is calculated (note that the window
size must be selected large enough to contain
enough data to give reasonable estimates of the
density functions, but small enough to reflect the
local structure of the non-stationary time series).
These histograms can be plotted as a waterfall



plot, or stacked histograms, as shown in Figure 5.
The histogram for the first time window is shown in
the bottom left, the plots then run up the left col-
umn as a function of time and continue from the
bottom right plot to the top right. These stacked
histograms can also be plotted as a contour
image, left to right as a function of time, as shown
in Figure 6. The image in Figure 6 is the first fuzzy
interest map used in IODA, and is called the his-
togram field (Figure 6 is a plot of the entire hour
of data, whereas Figure 5 is of only the first 555
data points). The contour plot in Figure 6 can be
thought of as a surface, where the color of the
contour represents the height of the surface above
each point in the time-wind speed plane. The dark
blue colors represent a larger height, whereas the
dark red color represents a height near zero.

It is natural for a human to see large clumps of
blue in Figure 6. These region in the image can be
encircled using a contour algorithm and define
concentrations or clusters of points as shown in
Figure 6. Here the cluster boundaries that sur-
round the data points of the cluster are shown in
blue. These clusters are found in the histogram
field by selecting a threshold for the contour algo-
rithm, if a lower threshold is selected, the clusters
grown in size and connect. A sequence of clus-
ters can be found by incrementally lowering the
contour threshold, or by “lowering the water”. This
expression is related to the idea that the contour is
a set of mountain peaks and the threshold level

Figure 5. Plot of stacked time series histograms. The
feature at the left represents the drop out data caused
by the loose nut.
represents a water level. As the level is lowered,
the peaks become connected by ridge lines.

Notice these blue clumps do not contain all the
data points in the original time series, i.e., there is
cluster data and non-cluster data, however by
inspection, the analyst combines these local clus-
ters into larger scale features. For instance in Fig-
ure 6, a human expert might group the large
clusters centered around 17 m/s-1 into a feature
and the others near 1 m/s-1 into a second feature.
In actuality there are three tasks at hand: charac-
terize/categorize the clusters, group the clusters
into features and characterize/categorize the non-
cluster data. In this way, the “good” and “bad” data
are distinguished. For example, in this case there
are three cluster categories, atmospheric clusters,
failure mode clusters, and unknown clusters.
Atmospheric clusters contain points that fit an
expected model, non-atmospheric clusters are
clusters that do fit an expected model for a particu-
lar failure mode. Unknown clusters are neither
atmospheric or non-atmospheric. The notion of
atmospheric, non-atmospheric clusters are quanti-
fied using fuzzy logic algorithms. These fuzzy logic

Figure 6. The data from Fig. 5 is plotted from left to right.
The horizontal axis is time in seconds. The vertical axis
is wind speed in m s -1. The color represents the height
of this histogram with blue a higher height and red a
height near zero.

Figure 7. A threshold is selected and a contour plot is
drawn around the data above the threshold. This breaks
the data into several clusters.



algorithms require a priori knowledge of the char-
acteristics of the atmospheric signal as well as
knowledge of the failure modes. One of the
strengths of fuzzy logic algorithms is the ease in
which new characteristics can be added, when
needed or discovered. It is important to note that
not all of the data points will clearly exhibit the a
priori expected behavior. Again, this natural ambi-
guity in classifications is handled by fuzzy logic
methods.

3.1.Classifying clusters
In general, clusters found using the above tech-

niques will, by definition, group data structures
together. Clusters can be classified according to
whether they are consistent with a known problem
or failure mode, such as the loose nut scenario, or
result from nominal atmospheric data, i.e., data
with expected statistics. One such characterization
is auto-correlation as defined by lags of data. Con-
sider the scatter plot of y(t) vs. y(t+1), or lag 1, for
the loose nut case, shown in Figure 8. Here y(t) is
the wind speed at time t. The color for each point
is simply the geometric mean of the initial confi-
dence for the points y(i) and y(i+h) is given by:

The solid black line is the confidence-weighted lin-
ear best fit to the data (here h=1). Notice in the lag
scatter plot there are two distinct groups of data,
the atmospheric data centered near 18 m s-1, and
the drop out data centered near the origin. The
fact there are two groups of data in the lag plot
indicates that the data is not stationary, and can be
used later to separate the histogram clusters into
stationary groups of clusters. It is possible to
define a confidence-weighted auto correlation.
Thus in lag(1) space, pairs of points that fit the
expected model should cluster around a line with a

Figure 8. A plot of the ordered pairs (y(t), y(t + 1)). The
vertical and horizontal axes are wind speed in m s -1.

Ci i h+, Ci Ci h+⋅=
slope close to one. A ρ=ρ(1) (the sample correla-
tion) value close to zero indicates a poor fit and a
value near one indicates an excellent fit. In fact, ρ
squared represents the percent of variation in
y(i+1) explained by the fit.

Similar techniques can be applied to the lag
plot to find clusters of points, that were applied to
the time series data. An image can be created by
calculating a local density using a tiling of overlap-
ping rectangles. A contour algorithm can be
applied to the resulting image and clusters of data
can be found (other data clustering techniques
would work well for this problem as well). Again
the water can be lowered and new clusters can be
found for each contour threshold, and a value for
ρ can be calculated for each of these new clus-
ters. The largest cluster that has a large value for
ρ, and contains points that are close to the best fit
line is then selected, as shown in Figure 8. This is
done by a fuzzy algorithm. The color of the con-
tour surrounding the lag points represents the
atmospheric score given to that cluster. Where a
cool color is a high score and a warm color is a low
score. Notice, the high scoring cluster in Figure 8
contains the data from the time series plot that a
human would probably classify as atmospheric.
The pairs of points given by y(i) and y(i+1), in this
lag cluster, are termed “atmospheric” since they fit
the expected auto correlation model of atmo-
spheric data. It is now possible to calculate an
atmospheric score for each cluster in time series
space.

3.2.Additional Membership Values
Numerous additional membership values can

be calculated. For instance a membership value
can be calculated by recursively fitting the time
series with straight lines. Suppose a segment of
data is fit with a line, and an quality of fit for the
data is calculated (such as ρ squared). If the qual-
ity indicator is too low, the best fit line is bisected
and new fits are calculated for the two new sets of
data. Fits are calculated until the quality indicator
is good enough or there are to few points in the fit.
A local best fit confidence can then be calculated
by how far a point is from the fit. Another similar
membership value can be calculated from the lag
plot, and the atmospheric lag cluster. Specifically
the number of sigma a point is from the best fit line
can be calculated given the variance in the atmo-
spheric lag cluster data. A lag cluster nsigma
confidence can then be calculated using an appro-

priate membership function such as .e
x2–



3.3.Final confidence calculation and the Final
Feature

Recall from the Figure 6 that there were multi-
ple clusters in the primary mode data. These clus-
ters can be combined into a single large cluster or
a final feature that spans the entire time interval.
The idea is to partition the clusters into meta-clus-
ters, or cluster the clusters. In the histogram field
shown in Figure 6, both the good clusters (cen-
tered on 17 ms-1) and the dropout clusters (near
zero) appear as bright blue regions. Recall that
there were two clusters of data in the lag plot (Fig-
ure 8), if the time series data were stationary then
there should only be a single lag cluster, i.e., the
points in the lag-1 plot would be distributed along
the one-to-one line. The fact there are two such
clusters, can be used to partition the histogram
clusters into meta-clusters that belong to the same
stationary feature, that is by determining which
data points occur in which cluster in both (Figure 8
and Figure 6). For instance, suppose all the points
which are in the large cluster near the center of
Figure 8 are given a large stationary lag cluster
membership value. Next the stationary histo-
gram cluster membership value is calculated by
finding all the histogram clusters with a point which
has a large stationary lag cluster membership
value. Consequently all clusters centered on 17
ms-1 in Figure 6 will be given a large stationary lag
cluster membership value, and hence belong to
the same stationary feature.

A combined membership value or final
confidence for each point can be calculated (Fig-
ure 9) by a fuzzy combination of all the individual
membership values, i.e. the histogram member-
ship value, the stationary feature membership
value, the local best fit value, the lag cluster
nsigma value, and so on. Notice that the combined

Figure 9. The data from Figure 2 is shown where the
color of each point is determined by the combined
membership function. A blue color has a membership
near 1, and a red color has a membership near zero.
membership value correctly gives a low confi-
dence to the data dropouts, and the spurious
points that fall between the dropouts and the pri-
mary signal. Notice the confidence value performs
well in Figures 10 and 11 as well. Figure 10 is the
final confidence values for the data from Figure 3.
Notice most of the points from time periods when
the anemometer was spinning are given low mem-
bership values (red). Figure 11 is the final confi-
dence values given for the data in Figure 4. Notice
the points in the suspicious streaks in the time
series data near 200 degrees are given low mem-
bership values (red). These confidence values in
Figures 9, 10 and 11 do identify most of the outli-
ers. Simulations and human verifications have
been done, and IODA does well in classification of
outliers. These studies will be reported elsewhere.

4. ADDITIONAL APPLICATIONS

The data in Figure 12 is the vertical wind as
measured by an aircraft flying in the vicinity of
Juneau. As before the color of the points indicates
the confidence in the data. There are two catego-
ries of data in this plot, semi-continuous data

Figure 10. The data from Figure 3 is shown with blue
colors representing points with high membership val-
ues.

Figure 11. The data from Figure 4 is shown. Notice the
streaks in the data are given a low membership value.



(mostly cool colors), and disperse data (disperse
warm points centered on 0 ms-1). On a gross scale
the confidence values assigned to the data corre-
spond to what a human expert might give the
points. However upon closer inspection there are
low confidence points intermixed with the semi-
continuous data. These halo points are not well
auto correlated and hence are given a low atmo-
spheric membership value. The confidence values
shown in Figure 12 were calculated by IODA with-
out any modification or tuning of parameters, and
it is important to note that during the development
of IODA such an example was never explicitly
considered (although individual aspects were,
such as the near uniform appearance of the dis-
perse data). This example is encouraging evi-
dence that the principles and implementation of
IODA can be applied to time series data from
sources other than anemometers.

Figure 13 is the result of a simulation. Points
were selected at random from an interval of time
with few outliers. The selected data points were
then replaced with values selected from a uniform

Figure 12. An example of aircraft wind speed time
series data is shown. The vertical axis is in m s -1 and
the horizontal axis is in seconds. High membership val-
ues are blue.

Figure 13. A simulation of anemometer data with uniform
background noise. Notice the signal is given by high
membership values (blue).
distribution with the same range as the nominal
anemometer data. As can be seen from Figure 13
the underlying time series is discernible to the
human eye (blue). Furthermore the confidences
assigned to the time series again roughly corre-
sponds the what a human might assign to the data
(given infinite patience). Such examples are seen
in lidar data in the presence of a weak signal
return.

5. CONCLUSIONS

We have studied the use of fuzzy image pro-
cessing techniques to find outliers in time series
data. Even though IODA was developed using
anemometer data, and their specific failure
modes, these techniques should apply to other
data sets as well. Specifically, if the time series is
approximately stationary over the analysis time
window considered, the range of the correlation
coefficients for nominal data is understood in the
first few lag spaces, the outliers are not well corre-
lated with the true data, and the statistical proper-
ties of the outliers are known, then such an
analysis should perform well. That is, if a human
expert can separate the true data from the outliers
in these and other images, then there is hope to
construct fuzzy modules to separate the data from
the outliers.
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