
4.7 MULTICAST DATA DISTRIBUTION ON THE AWIPS LOCAL AREA NETWORK

Michael R. Biere*?

Darien L. Davis
Forecast Systems Laboratory, Boulder, CO

1. INTRODUCTION

Historically, the AWIPS site architecture has
relied on a central repository at the site containing
all data viewed at workstations within the site. The
host containing this data is called the Data Server
(DS). A file system containing the data is exported
using NFS (Network File System) from the server
to each of the visualization workstations at the
site. This central Data Server has been one of the
performance bottlenecks at the sites.

This architecture can be thought of as a pull
approach, in which data is pulled by the
workstation software as needed to service user−
initiated display requests. FSL has investigated an
alternative push approach, in which data is
efficiently pushed to the workstations as it
becomes available on the server. The data is then
available on the local disk of the workstation, to be
loaded as needed by the display software.

We expected this approach to improve
workstations performance by reducing latencies
and increasing throughput in displaying data on
the workstations. As we show later, we have
experimentally verified a performance
improvement from this approach.

There are a number of open design issues,
including the optimal subset of site data to
broadcast, the data notification mechanisms, and
whether to multicast transmission−format or
decoded data formats. In our demonstration
system, we’ve generally taken the simplest
approach we could find in tackling each of these
issues.

2. THE MULTICAST APPROACH

To demonstrate efficiently pushing data to the
workstations, FSL has adopted the broadcast
software developed at the National Severe Storms
Laboratory (NSSL). This software was developed
for use in radar product generation, but is
sufficiently general to allow other uses such as

 * Corresponding Author Address: Michael R.
Biere, NOAA/OAR/FSL, Systems Development
Division, 325 Broadway R/FS4, Boulder, CO
80305−3328; e−mail: biere@fsl.noaa.gov.

 ? In collaboration with CIRA (Cooperative
Institute for Research in the Atmospere), Colorado
State University.

ours. The NSSL software may be run as either a
broadcast, in which data is sent to every host on a
network, or as a multicast, in which data is sent to
an addressable subset of the hosts on a network.
We are using the software in the latter, multicast
mode.

Broadcast (and multicast) sends a single
stream of packets across the network, which are
received simultaneously by all the receiving hosts.
This obviously results in dramatically less network
traffic than repetitively sending the same data over
dedicated connections to each receiving host.
Normally, broadcast and multicast are considered
to be unreliable communication mechanisms, in
the sense that data is not guaranteed to be
delivered, or to arrive in the correct order. The
NSSL software builds an additional level of
reliability, by checking for data arrival, and
retransmitting any missing data over a reliable
channel. In practice we have found that very little
data needs to be resent.

To reduce the amount of interprocess−
communications (IPC) middleware software in our
demonstration system, we replaced the NSSL IPC
software (known as Linear Buffer) with the
standard AWIPS IPC software (known as
ThreadIPC).

The two primary NSSL processes are named
bcast and brecv (for broadcast, and broadcast
receiver, respectively). We modifed these
processes slightly, and to distinguish the modified
versions, we’ve renamed them to mcast and
mrecv (for multicast and multicast receiver). There
is one mcast process on the central server, and
one mrecv process on every workstation host that
receives the multicast data.

3. EXPECTED BENEFITS

Our rationale in implementing the AWIPS
multicast system was to improve overall system
performance and expandability. We expected a
number of specific benefits.

3.1 Loading Time Improvements

Since the workstations can now load data
directly from a local disk, rather than across the
network from the NFS server, throughput should
be higher, and latency lower, resulting in faster
load times. This should be especially true for

high−volume data sets such as satellite imagery.

3.2 Lowering NFS Server Load

Since the multicast data needs to be accessed
only once to transmit, rather than for every
workstation access, we expect the load on the
data server disks to be reduced, along with the
NFS load on the server.

3.3 Expandability

Adding additional workstations has no
additional load to the server in our multicast
architecture. We could also use this mechanism to
provide data to local application servers with no
impact on the AWIPS data server. (This is a slight
simplification, but the additional overhead is very
small compared with traditional access via the
NFS server.)

3.4 Redundancy

Since we are broadcasting the data to every
workstation, a server failure will not affect access
to existing data. This is unlike the current
architecture, in which loss of the data server is a
critical failure requiring failover to an alternate
server, during which time all data is unavailable.

3.5 Lower Network Usage

Along with lower server overhead from
accessing data only once, the network usage is
also lowered due to sending the data only once for
all workstations.

3.6 No NFS Race Conditions

With the data securely on a local disk, there
will be no nfs cache inconsistencies or race
conditions such as those which plague AWIPS
display software from time to time.

4. DESIGN ISSUES

In considering the use of a multicast data
distribution at an AWIPS site, there are a number
of design issues which need to be addressed. We
list some of them here, and discuss the simplifying
assumptions we made in our demonstration
system.

4.1 What Data to Multicast

One extreme approach is to send and store all
data locally on every workstation. In this case,

there would be no need for a central data
repository.

An alternative is to send all data, but keep a
smaller subset of it on the workstations than on a
central data server. The central server might have
a longer history of data, or case studies, for
example.

Another possibility is to only send a subset of
the data to all workstations, and rely on a server
for the rest. The criteria for determining what data
to send might be based on timeliness performance
requirements, or design expediency. For example,
satellite and radar data files are good candidates
because they are both important to the forecaster,
and are file−based data sets and hence easy to
broadcast, as we discuss next. Those are the data
sets we chose for our demonstration.

4.2 Structured Data Sets

A few of the AWIPS data sets are stored in a
simple format, with one data set per file. For
example, radar scans and satellite images are
stored in individual files. This makes distributing
them easy, since as each file appears on the
server, it is just copied to the workstations.

Many data sets are more complicated. For
example, model runs are stored in structured files,
but fields of each model run are received
individually, and inserted into place in the
structured file. If the individual fields are multicast
as they are received, then the multicast receiver
software must replicate the ingest functionality that
decodes and stores the data into the appropriate
file. The extreme case of this would be to
broadcast all data as received, in transmission
format, and replicate all of the decoders on each
workstation.

Alternatively, one could wait until each model
run (or other structured file) is finished, and then
multicast the entire file. This would result in
considerable delay in the availability of the earliest
data within the structured file.

A compromise implementation would be for
the workstation display software to use the
existing server files while they are being updated,
and use local multicast copies once the files are
complete.

4.3 Inventory Server

The current AWIPS software is limited in its
ability to accommodate an architecture wherein
some data is stored on the server, and some on
each workstation. In particular, AWIPS display
software assumes that all meteorological data to

display resides within a single directory hierarchy
pointed to by the FXA_DATA environment
variable.

One can make some dramatic workarounds to
this limitation by means of symbolic links within
the directory structure, but a more elegant solution
would be to extend the existing design with an
inventory server software component. This
inventory server would know about the actual
distribution of data at the site, conceptually
merging the central data with that at the
workstations, and removing the limitation of one
directory hierarchy.

4.3 Missed Data

What do we do when a workstation is down
and unavailable for a while, then comes back up?
One approach would be to initiate a backfill
operation, filling in data from either a central
server. Once the local data base was caught up,
use of the workstation could resume.

Another approach is to merge any missing
data into the local database as needed by the
workstation software, in conjunction with loading it
to the display.

The simplest and perhaps best approach is
not to bother with backfilling at all, but merge in
any missed data from the central server as
needed while the workstation is running. This
approach merges well with the inventory server
previously discussed.

In any of these approaches, the role of central
server could be played by another workstation (or
even a set of workstations in Napster−like fashion)
with a complete database.

4.4 Relational Database

Our description of data storage within AWIPS
has been simplified to this point. In addition to the
file−based data sets which we have been
discussing, other data is currently stored in an
Informix relational database on the server. It
seems unreasonable to replicate this Informix
database on every workstation, so we assume
that these data sets will remain centralized.

4.5 Notification Server

The AWIPS notification server process is
responsible for telling client processes at the site
when new data is available for display. The
notification server has been a centralized function
at the site. Once data is distributed to individual
workstations, each workstation has a potentially
different view of the arrival of data. Hence in a

robust architecture, each workstation should have
its own notification server, reporting the arrival of
data to the workstation. This is similar to the need
for a distributed inventory server, reflecting the
new distributed nature of data availability.

Use of the central notification server in the
distributed data environment is subject to race
conditions in which notifications arrive before data
has been completely received by the multicast
receiver on the workstation.

4.6 Purging

Although it’s a relatively minor issue, it’s clear
that replicating data on the workstations will also
require replicating data management activities
such as purging old data sets to make room for
new ones.

5. DEMONSTRATION SYSTEM

FSL implemented a demonstration multicast
system for the two simplest (but still important!)
data sets: satellite images and radar tilts. We have
taken the path of simplicity in most of the design
decisions. Figure 1 shows the key processes in
our system. The left side shows the processes on
the data server, while the right side shows the
processes that are replicated on every
workstation. The dashed line down the center
represents the local area network.

Figure 1. Process data flow of demonstration multicast system.

The mcast and mrecv processes are modified
versions of the NSSL bcast and brecv processes.
The multicast_xmit and multicast_recv processes
are client processes which handle reading and
writing of AWIPS satellite and radar files.

On the server, the multicast_xmit process
registers with the notification server to be notified

when new radar or satellite data are available.
When a new file is available, it is read from the
data tree below /data/fxa in the file system. The
data is then sent via the AWIPS thread IPC to the
mcast process, which multicasts it to the
workstations.

On each workstation, the mrecv process
receives the multicast data and hands it off to the
client process multicast_recv, which writes the file
to disk. The data is written to the workstation local
disk in a different directory hierarchy, for example
at /scratch/data/fxa. Every file is written to the
same relative position in this file hierarchy as
where it was read from in the server’s /data/fxa
hierarchy.

6. EXPERIMENTAL RESULTS

The test environment simulated the most
current AWIPS−deployed system including the
linux preprocessors and linux workstation. All
workstation tests were performed on linux
systems.

The system had three areas to test:
1) performance for the forecaster;
2) impact on the data server; and
3) data availability and validity.

6.1 Performance Tests

The performance tests run three scripting
routines that simulate a forecaster using a mouse
and making menu selections. The three tests load
satellite, radar, and synoptic data sets. The time
lapse for running the tests is then averaged and a
rating is determined from that average.

Figure 2 shows a high level system and
network configuration used for these tests. The
hybrid computer architecture uses an HP NFS
server and linux NFS server. The HP system is
networked by FDDI to a Plaintree switch. The data
is then transmitted over a 100baseT network to
the forecaster workstation. During the next year,
the NWS will beta test this system with the
satellite and grid data available on the linux server
and other data sets on the HP server.

Four timing tests were run on different
configurations for accessing data. The linux
workstation was staged with AWIPS 5.2.2
software and care was taken during the test to
remove all of the buffered cache data in memory.
Figure 3 shows the configuration for the first test.

Figure 2. Test system configuration.

For general information, a test was run with all
of the test data moved to a RAM filesystem on the
workstation. Although this would not represent a
operational system, this gives a good benchmark
for the performance tests. Since the data is
resident in memory, no disk or network
interference is possible. The results represent the
best that the workstation can perform on the
benchmark tests. Figure 3 shows the system
configuration.

Figure 3. RAM filesystem configuration.

For the second performance test, all of the
data was moved locally to a disk on the forecaster
workstation. This test shows the performance
benchmarks when an NFS server is not used to
host data.

The third performance put the data repository
on the linux fileserver (see Figure 4). The
workstation accessed data via NFS over the
100BaseT network to transfer the frames for
display. This is similar to current schemes that the
NWS is investigating with port to linux.

Figure 4. Linux NFS data server.

The fourth configuration tested had the data
resident on the HP data NFS server. All data was
transferred to the linux workstation via the FDDI
and network switch. Figure 2 reflects this
configuration.

The final tests reflect the b−cast data
repository. The grids are on the linux
preprocessor, the point data is on the HP data
server, and the radar and satellite data are local to
the workstation (see Figure 5).

Figure 5. Simulated multi−cast configuration.

The performance benchmark is based on
software written by Michael Biere and Timothy
Hopkins (National Weather Service). These scripts
characterize data retrieval for normal use of the
workstation by a forecaster. The final performance
ratings from the aforementioned tests are
summarized in Table 1.

The last line in Table 1 shows the WPR for the
HP workstation client and server. These ratings
reflect the current AWIPS system minus any linux

upgrades. As one can see, the performance
improvements are remarkable the more that data
is removed from the HP NFS server.

File access type WPR
RAM filesystem 28
Local data 35
Linux NFS 59
HP NFS 95
B−cast (Figure 5.) 44
All HP hardware >300

Table 1. WPR ratings for testing configurations.

6.2 Impact and Data Tests

The tests for server impact and data validity
have not been completed at this time. These
results will be presented with the paper at the
conference.

7. SUMMARY

In summary, although the software is in
preliminary testing, the results are promising. The
forecasters will see performance gains for each
data set propagated to the linux server and
workstation. As expected, the greatest gains show
all the data local to the forecaster workstation.
This, however, is a complicated data management
effort. Separating and prioritizing which data sets
is key to a successful use of the b−cast software
for system support and forecasters alike.

8. REFERENCES

Jing, Z., M. Jain, 2000: The Linear Buffer and its
Role in the WSR−88D Open System RPG,
Preprints, 16th International Conference IIPS,
Long Beach, CA, Amer. Meteor. Soc., Paper 11.9,
pp 395−398.

Jain, M., Z. Jing, A. Zaharai, A. Dodson, H.
Burchan, D. Priegnitz, S. Smith, 1997: Software
Architecture of the NEXRAD Open Systems
Radar Product Generator (ORPG), Preprints 13th
International Conference IIPS, Long Beach, CA,
Amer. Meteor. Soc., Paper 8.4, pp 238−241.

