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1.  INTRODUCTION 

 
 A method to simultaneously retrieve cloud 
liquid water and water vapor profiles using data from the 
Advanced Microwave Sounding Unit-B (AMSU-B) 
radiometer is described.  Results of simulated retrievals 
for simple liquid and mixed-phase clouds and global 
maps of retrieved cloud parameters are presented.  The 
AMSU-B, with channels at 183.31±1, ±3,  ±7, 150, and 
91 GHz, can be used to retrieve water vapor profiles, 
taking advantage of the 183.31 GHz water vapor 
absorption line.  The retrieval, a physical inversion using 
an optimal estimation technique, is extended to retrieve 
limited cloud liquid water profiling information as well. 
 
2.  RETRIEVAL ALGORITHM 
 The basic retrieval algorithm, a physical 
iterative retrieval of water vapor profile, is described in 
Blankenship et al. (2000).  This method has been 
adapted to execute a combined retrieval of liquid cloud 
and water vapor profiles.  The algorithm attempts to find 
the best fit to the AMSU-B observed brightness 
temperatures as well as to a background profile—in this 
case given by an analysis from the Navy Operational 
Global Atmospheric Prediction System (NOGAPS).  
Currently the AMSU-B channels at 183±1, 3, 7; and 150 
GHz are used as inputs. 
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Figure 1.  Normalized weighting functions (solid lines) 
for the profile given by the thick black line (RH), with a 
cloud at 2 km where RH=100%.  Jacobians (dashed) 
show levels for which the observations are sensitive to 
changes in RH’.   
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*Corresponding author address:  Clay B. Blankenship, 
Naval Research Laboratory, Monterey, CA 93943;  
e-mail:  blankens@nrlmry.navy.mil.  
 

 
 The algorithm tries to minimize the cost 
function  
 

 
where y is the vector of observations (brightness 
temperatures), H is the forward model, Sεεεε is the 
observed plus forward model error covariance matrix, x 
is the atmospheric state vector, xb is the background 
state, and Sa is the background error covariance matrix.  
This is equivalent to maximizing the Bayesian 
probability of atmospheric state x given knowledge of 
xb, y, and their error characteristics (Rodgers, 2000).  
We solve for a new x which minimizes this function 
using a linearization of H(x) about the current x.  This 
process is repeated until convergence is obtained.  If 
the retrieval fails to converge within 12 iterations it is 
rejected, but most converge in 3 to 6 iterations. 

In the combined water vapor/cloud profile 
retrieval, the state vector x is defined as a 
pseudohumidity variable RH’, equal to relative humidity 
(RH) when RH<100% and linearly related to cloud liquid 
water density when clouds exist.  (Saturation is 
assumed over the entire scene in this case.)   
 
 RH’=RH (unsaturated) 
 RH’=1.00+k*CLW (saturated). 
 
Here CLW refers to cloud liquid water.  Since the 
Jacobian terms ∂TB/∂RH and ∂TB/∂CLW are known, the 
Jacobian term ∂TB/∂RH’ can be calculated from these 
relationships.  A value of k=6.667*105 was chosen (for 
CLW expressed in kg/kg) to give the right 
order of magnitude to the Jacobian term for cloudy 
layers.  Discontinuities at RH=100% cannot be 
eliminated because one value of k must be used at all 
frequencies.   
 The Jacobians are plotted in Figure 1 for a 
profile with a cloud at 2 km.  The 183 ±3 and ±7 GHz 
channels have secondary peaks at the top of the cloud, 
indicating sensitivity to the cloud liquid water at that  
level.  The 91 and 150 GHz channels have the highest 
sensitivity throughout the cloud, rather than at the 
ground as in the cloud-free case. 

A plane parallel, non-precipitating liquid or 
mixed-phase cloud is assumed with an upper limit of 0.5 
mm of cloud liquid water.  Scattering is neglected; the 
presence of precipitation will generally cause the 
retrieval to fail due to high TB error.   
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Figure 2.  Retrieved versus true cloud parameters for simulated retrievals.  a) Cloud top; b) Cloud base; c) Cloud 
Liquid Water. 
a) 
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Figure 3.  a)  GOES-10 infrared image; b) Retrieved cloud liquid water; c) Retrieved cloud top; d) Retrieved cloud 
base.
 



 

 

3.  SIMULATIONS 
 Retrievals were performed using observations 
simulated from a database of ECMWF analysis 
temperature, humidity, and cloud profiles.  The cloud 
profiles were adjusted to be plane parallel by removing 
layers of low cloud fraction and assuming that the 
remaining layers had 100% cloud cover.  Results from 
simulated retrievals are shown in Figure 2.  Simulated 
retrievals are able to reproduce cloud top, base, and 
liquid water amount fairly well, with cloud top being 
slightly underestimated, cloud base slightly  
overestimated, and total cloud liquid water somewhat 
underestimated on average. 
 
4.   RETRIEVALS FROM AMSU-B OBSERVATIONS 
 
 Retrievals were performed from AMSU-B 
observations for the date of 22 March 2001.  The 
NOGAPS analysis temperature profile was used as the 
background temperature.  Results are shown in Figure 
3, along with an infrared image for the same 
approximate time.  Regions where the retrieval failed to 
converge (usually due to heavy precipitation) are left 
blank (e.g. the center of the intense storm near the 
terminus of the leftmost swath).  The cloud liquid water 
clearly corresponds to regions of cloud in the IR image.  
Several extratropical cyclones and the South Pacific 
Convergence Zone are visible.  There is an increased 
sensitivity to cloud near the edges of a scan, since the 
cloud optical depth increases with incidence angle. 
 The retrieval tends to put high cloud tops as 
expected in regions of convection in agreement with the 
infrared image.  It also has a tendency to elevate cloud 
bases in these regions, perhaps due to a loss of 
sensitivity in heavier clouds.  Realistic high cloud tops 
also appear on the eastern edges of extratropical  
 

 
Figure 4.  Cloud base height (black crosses) measured 
by a ceilometer at Nauru on 29 Apr 2001.  Red crosses 
are the height of the second cloud base.  The line 
indicates percentage of time within each hour that cloud 
was detected. 

cyclones and in an area of high thin cloud west of 
Mexico.  
 
5.  VALIDATION OF RETRIEVED CLOUD 
PARAMETERS 
 Direct validation of retrieved cloud parameters 
has proven difficult.  Several factors contribute to this  
difficulty.  The true cloud structure may be more 
complicated than the simplified structure used in the 
simulations.  Comparison with ground-based  
observations of cloud base height (ceilometers, METAR 
reports) is difficult due to disparate spatial scales (a 
point measurement versus an area measurement) and  
inexact temporal matches.  (The range of cloud base 
heights measured by a ceilometer over just one hour 
can vary tremendously, as illustrated by figure 4.) 
Comparisons of cloud tops with infrared measurements 
are poor because the infrared instruments are sensing 
the top of the ice cloud, while the microwave is primarily 
sensing liquid water, and may not detect very thin 
clouds.   
 Figure 5a shows an example of retrieved cloud 
top height from AMSU-B observations in the North 
Atlantic at the same time as in Figure 3.  The output of 
an objective geostationary infrared/visible cloud type 
classification algorithm (Bankert et al., 2002) is given in 
Figure 5b.  The retrieval successfully identifies the 
altocumulus, altostratus, and cirrostratus (light green, 
dark green, and orange in Figure 5b) as high clouds.   
Other clouds have a tendency to be identified by the 
retrieval as low clouds.   
 
6.  CONCLUSIONS 
 This algorithm seems to do well in simulation 
tests, but it is difficult to validate the results with real 
data.   The future CloudSat radar (Stephens et al., 
2002) could potentially be used to test and validate the 
quality of the retrieved cloud base information.  The 
algorithm might also be improved by the use of 
additional channels.  Preliminary results indicate that the 
retrieval of cloud liquid water is improved substantially 
by adding AMSU-A channels.  Cloud top information to 
from infrared sensors might help constrain the cloud 
position and improve cloud base retrieval. 
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Figure 5.  a) Retrieved cloud top height; b) Output of a 
cloud type classification algorithm for the same region. 
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