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1. INTRODUCTION

With the development of computer
hardware, observation networks, and
numerical weather  forecast model
techniques, the size of the model data
becomes increasingly large. A typical high-
resolution model produces a few gigabytes
of data everyday. In order to effectively
transmit and store the model data, we need
to consider and investigate some
appropriate compression techniques.

The  wavelet transform-based data
compression technique has been
successfully used in the compression of
imagery data, such as satellite images. The
traditional wavelet lossy compression
schemes for imagery type data minimize
mean squared error (MSE), which measures
the ‘overall or ‘average’ error of the
reconstructed images. The reconstructed
images with small MSE usually contain only
visually unnoticeable losses, and are
considered ‘meteorologically useful’ in many
applications. For model data, however, we
need a more rigorous control of the losses,
or errors. One common requirement is that
the precision, or the magnitude of the
maximum allowable round-off error has to
be within a given threshold. This is a more
difficult requirement to meet for wavelet
transform-based (or other orthogonal
transform-based) data compression.

With the same precision requirements, the
compression scheme described in this
article outperforms typical lossless codec
(coder and decoder) by between 200%-
600%.
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In this paper, we first give an overview of the
special nature of model data. We then
present our data compression scheme using
wavelet transform-based data compression.
Some preliminary test results are described.

This article ends with discussions of some
practical issues and possible future research
directions.

2. MODEL DATA

Model data are the grid data points that
represent the atmospheric state. Compared
to imagery data, model data have higher
dimensionalities and  relatively  lower
resolutions. For each parameter, there are
three dimensions in space and one
dimension in time. There is good correlation
between the adjacent data points in all
dimensions. Some weather data fields, such
as temperature and wind speed, are
relatively stationary, and more correlated,
and thus more compressible, while others,
like relative humidity, are relatively non-
stationery, and less correlated, and thus less
compressible. For the same field, the higher
the vertical level, the smoother the field, in
general. In particular, for most fields, the
data close to the surface and tropopause
tend to have more high frequency
components, therefore they are more
difficult to compress.

Apparently, for different fields, there are
different requirements for the maximum
round off errors. For this experiment, the
following precision requirements are applied
to the selected Eta-12 parameters:

e Temperature 2°K
o Relative Humidity 1%



The above special nature and compression
requirements of the model data warrant a
special design for the codec, which should
take advantage of the recent development of
data  compression  technology  while
accommodating special needs of the
datasets.

3. COMPRESSION SCHEME

Data compression with no loss, or near no
loss has been studied for both transform-
based and non transform-based schemes, in
the context of imagery data (Karray et al.
1998, Wu and Bao 2000). Since most fields
of our model are highly correlated along
each dimension (especially horizontal
dimensions), we believe that transform gain
(Jayant and Noll 1984) will be significant,
therefore the transform-based compression
scheme should be the obvious choice.

Wavelet data compression consists of three
steps: transform, quantization and entropy
encoding. The first step decorrelates data so
that information about the data is compacted
into a few coefficients. The quantization step
achieves bit rate reduction for the data, and
also introduces loss (or errors) to the
reconstructed data. The last step further
reduces the size of the data with a lossless
encoder.

Different error norms are used to measure
the fidelity of the reconstructed data for
lossy data compression. As we have
mentioned in the introduction, most lossy
image compression schemes use MSE as
the error measure, which is equivalent to the
L2 norm error, while for model data, we want
to specify a precision or threshold, which is
equivalent to using L” norm error.

For transform-based data compression, the
quantization is performed in the coefficient
domain. Since the Euclidean norm is
invariant under orthogonal transform, it is
straightforward to optimize the quantization
so that the L? error of the reconstructed
datasets is minimized. However, finding the
optimal quantization to minimize the L error
of the reconstructed datasets is much less
straightforward. For a particular data point,
the reconstruction error is bounded by the

linear combination of the quantization errors
of certain coefficients. Finding the optimal
quantization step for an individual
coefficient, or even for each subband, is
time consuming and difficult. Besides, the
resultant quantization step is usually too
small to yield good compression. In addition,
our operational environment has strict
requirements for computation time. That
prohibits us from optimizing the compression
through any lengthy iterative process.

In our experiment, we use a rather simple
scheme similar to the so-called lossy plus
lossless residual encoding (Rabbani and
Jones 1991) for  lossless image
compression. First we compress the data f
minimizing error in the L2 norm and compute
the reconstructed data f. Then an error grid
can be computed as the difference between
the two e = | f — f|. We carefully entropy
encode the critical information of the error
grid into a compact bitstream, and append it
to the bitstream of the lossy compression to
make it a complete compressed dataset. On
the decode side, the data f is first
reconstructed from the bitstream of the lossy
compression, and then the losslessly
encoded critical information of the error
residuals are decoded and added back to
the reconstructed datasets. This way we
guarantee that no data point will have an
error that exceeds the given threshold.

4. PRELIMINARY RESULTS

We have applied the above data
compression procedure to the temperature
and relative humidity field of the Eta-12
model. The reason for choosing these two
fields is because they represent two typical
fields of stationary and nonstationary
meteorological data. To examine the
differences between the fields at different
height levels, we compress each frame
individually with a different compression
ratio. With L” error controlled under a
specified threshold, we plotted compression
ratio of temperature and relative humidity
fields at each pressure level in Figure 1 and
Figure 2.
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Fig. 1. The compression ratios for the
temperature field at different pressure levels
with controlled precision: L” error < 2% K.
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Fig. 2. The compression ratios for the
relative humidity field at different pressure
levels with controlled precision: L* error <
1%.

The average error reflects the overall quality
of the reconstructed data. In Figures 3 and 4
we plotted the average errors, under the
same compression ratios, for the two fields.

The compression test was done on an 850-
MHz Pentium Il desktop machine. The
average compression time to encode each
field (2.5 MB) is about 2-3 seconds.
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Fig. 3. Average errors for the temperature
field at different pressure levels.
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Fig. 4. Average errors for the relative
humidity field at different pressure levels.

5. CONCLUSION

For a given precision requirement, a
wavelet-based data compression technique
was applied to the temperature and relative
humidity fields of the Eta-12 model. With the
maximum allowable error of 2° degrees
Kelvin, the wavelet compression procedure
achieved an average compression factor of
45:1 for the quasi-stationary temperature
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field. The same procedure was applied to
the relative humidity field, which is non-
stationary compared to the temperature
field. For this field the maximum error was
set at less than 1%. With this predefined
precision, the data compression procedure
achieved an average compression factor of
30:1.

Compared to typical lossless codecs, with
the same precision requirements, our codec
achieves 2 to 6 times higher compression
ratio. It implies that for a typical model
output sized 1 GB, if transmitted over a 1
Megabit per second communication
channel, the transmission time can be
reduced from about 2.8 hours to about half
an hour.

The presented data compression scheme is
asymmetric by nature. It takes more time to
encode the data than to decode it. This
asymmetry is beneficial to our practical
implementation, since we usually have more
computing power in the encoding machine
than in the decoding machine.

During future development, we plan to focus
on the following two aspects of the data
compression scheme.

The approach to control the maximum round
off error is computationally simple (or
somewhat ad hoc). It is feasible with our
current operational environment; however,
an ideal algorithm should be able to find the
best bits allocation that minimizes the L*
error. An efficient algorithm that finds that
allocation is very useful both in theory and in
practice.

The vertically and timely adjacent frames
are highly correlated. Current results only
reflect the compression performance of our
scheme on the two-dimensional field (in the
horizontal plane). We can apply three or four
dimensional separable wavelet transform to
the volume data. To meet the robust (error
propagation control) requirement, we can
possibly encode each partitioned group of
coefficients individually into an independent
bitstream, as in Creusere (1997), to build a
more error-resilient codec.
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