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1. INTRODUCTION. 
1 
A methodology to predict monthly rainfall is 
proposed.  The prediction strategy depends on 
dynamic probability models and empirical 
functions.  The parameters of the dynamic 
probability model are changing with time while the 
structure of the probability model will remain 
unchanged.  The parameters of the dynamic 
probability model are estimated at every point in 
time by using empirical functions.  The empirical 
function is a time difference equation that 
establishes the relationship between a random 
vector that belongs to the probability model and a 
set of time series, which are observations of 
climatological phenomena.  In time series 
literature the empirical functions are known as 
multivariate transfer function models (Box and 
Jenkins, 1976; Brockwell, and Davis, 1996). A 
mathematical relationship between the dynamic 
probability model and the empirical functions was 
derived after taking the first moment of both the 
probability and the empirical models.  Thus, the 
parameters of the dynamic probability model 
become a set of empirical functions.   
 
The maximum likelihood method was used to 
estimate the parameters of the dynamic probability 
model because this method is invariant under 
linear transformations and because most of the 
time their estimators are consistent (Bickel, and 
Doksum, 1977).  Typically, the resulting likelihood 
function is a highly nonlinear function with some 
constraints.  The suggested optimization method 
consists of two steps:  The first one is dedicated to 
estimate the initial point, which is obtained after 
estimating the parameters of the empirical 
functions.  The second step consists of obtaining 
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the final estimates of the parameters of the 
dynamic model.  The sequential quadratic 
programming (SQP) algorithm was selected to 
solve the constrained nonlinear optimization 
problem.  Thus, if an initial point is carefully 
selected, then the nonlinear algorithm will 
converge to a satisfactory local maximum, and 
consequently, the optimal parameters of the 
dynamic probability model will be available.   The 
dynamic probability model and the empirical 
functions will be used to compute the probability 
that in a particular station and time the rainfall 
level will exceed the normal behavior, or the 
rainfall level would be less than the normal level, 
or the rainfall level would be in the normal range.  
Once, the probability is known for one of the 
previous three stages, the conditional expected 
rainfall will be predicted.      
 
The proposed algorithm was successfully applied 
to predict the monthly rainfall process of six rainfall 
stations located in Puerto Rico (PR) with the 
longest rainfall records.  PR is a small Caribbean 
island. Nevertheless, as part of the NWS COOP 
program  91 rainfall gauges have been installed 
starting in 1899 and 65 of them are currently 
collecting rainfall data on a daily basis.  
 
2. DATA 
 
In this study, six rainfall stations were selected 
since they have the most complete and the 
longest records in Puerto Rico.  The stations are: 
Coloso, Isabela, Manati, Maunabo, Mayaguez, 
and San Juan. These stations have one hundred 
and one years (1901-2001) of daily rainfall 
records.  The rainfall records were compared to 
well know SST Oscillation Indexes. The studied 
time series are the following: the SST in the North 
Atlantic (5-20°N, 60-30°W), SST in the South 
Atlantic (0-20°S, 30°W-10°E), SST in Tropical 
Equatorial (10°S-10°N, 0-360°).  The data set also 
includes the SST in the equatorial Pacific: el Niño  



Figure 1.  General Model Scheme 
 
1-2 (0-10°S, 90-80°W), el Niño 3 (5°N-5°S, 150-
90°W), el Niño 4, (5°N-5°S, 160°E-150°W), and el 
Niño 3-4 (5°N-5°S, 170-120°W), as well as the 
North Atlantic Oscillation index.  These data sets 
was provided by the Climate Diagnostic Center 
located at Boulder, Colorado and by the Puerto 
Rico Climate Office . 
The SST time series are complete ; however, 
rainfall observations have missing data. Therefore, 
missing rainfall observations were estimated in 
order to perform time series analysis and to 
develop the appropriate empirical functions. A 
method to perform time and spatial interpolation 
was implemented to estimate the missing values 
of the rainfall process (Ramirez-Beltran et al., 
2002).   The interpolation algorithm is a convex 
combination of spatial and time interpolation 
methods.  The convex combination can be written 
as follow: 
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where yi,t is an estimate of the missing value in the 
ith station at time t, Ki,t is the spatial interpolation in 
the ith station at time t obtained by using the 
Kriging algorithm and Ai,t is the time interpolation 
in the ith station at time t obtained by the seasonal 
autoregressive integrated and moving average 
(ARIMA) model (Storch and Zwiers,2001; 
Brockwell, and Davis, 1996).  The iα  is the 
convex coefficient at the ith station obtained by 
using a cross-validation technique.  A large subset 
of rainfall observations with no missing values 
were selected to estimated the iα  coefficients.  
The selected data include 187 observations, which 
start on May 1985 and finish on December 2001.  
The selected series were divided into two equal 

parts, the first part was used to fit the ARIMA 
model and the second one was used to perform 
time and spatial interpolation.  The second part of 
the data was used for validation.  Thus, 30% of the 
second part were randomly selected and 
eliminated for each series.  The eliminated values 
were declared as missing values.  The Kriging 
algorithm and the ARIMA model were used to 
estimate the missing values for each station.  
Since the actual values are known the 

iα coefficients were estimated using linear 
ression techniques. 

3. METHODOLOGY 
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The proposed methodology consists of 
probabilistic models in which the parameters of the 
models are changing because of the effects of 
meteorological changes.  Thus, the parameters of 
the probability model can be written in terms of 
meteorological indexes and consequently 
developing empirical functions can capture the 
dynamics of the probabilistic model.  Careful 
attention must be devoted to satisfy the 
constraints involved in the parameters of the 

obabilistic model.  Thus, if empirical functions do 
not satisfy the paramet
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3.1 Probability of Stage 
 
We defined rainfall processes for any month or 
year as follows: A month is in excess stage when 
the amount of rainfall exceeded the 90 percentile.  
A month is in scarce stage when rainfall is less 
than the 10 percentile.   A month is in a normal 
stage when the amount of rainfall occurs in the 
range between 10 to 90 percentiles.  Once the 
model establishes that a particular stage has 
occurred then it proceeds to identify the 
conditional probability density function and to 
estimate the expected rainfall for that specific 
month. 
It
mutually exclusive even
p
sequence of three multi exclusive events.  
Therefore, the stage of a single month for a 
particular year can be modeled by the 
generalization of the Bernulli distribution, which 
will is named here the Mutibernulli distribution.  A 
random vector, Yt, has the Multibernulli distribution 
if its probability mass function can be written as 
follows: 
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The parameters of the dynamic Multibernulli 
distribution will change through time and 
consequently an empirical model is required to 
express the parameters of the distribution by 
climatological riables, which also change 
throughout time.  Therefore, the dynamic of the

r amount of rainfall for a given month on a 

t,  is the rainfall 10 percentile for t

nth,  is the rainfall 90 percentile for the ith 

month.  are th eters of the Multib
and each one represents the 

bab uccess for the ith stage at the year t.  
For exam  represents the probability that a 
particular month is at the ith stage on year t.  
 
It should be noted that the constraints of
(2) can be incorporated into the probability model 

nd consequently the Multibernulli distribution can 
be
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of y1,t which is a sequence of Bernulli process 
defined by equation (4).  Similarly, the zijk is a 
meteorological index whose subscripts be
set “B”.  The coefficients aijk. and bijk 
regression coefficients and ε1ijk and ε2ijk are 
equences of independent random variables.  
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where xijk is a meteorological index with a 
subscript that belong to set “A”.  In this study a  

meteorological index is one of the variables 
defined in the data section.  “A” is a set of 
subscripts defined as follows: i represents the 
variable name, j represents the month, t indicates 
the year and L is the time lag expressed in year
T

ability 

long to 
are the 

s
Model 6) represents the occurrence of excess of 
rainfall while model (7) expresses scarce rainfall 
for a particular month.  
It is necessary to express a relationship between 
the empirical models and the probabilistic model.  
The approach to derive this relationship is by 
determining the first moment of both empirical and 
probabilistic models.  The first moment of the 
probabilistic model is obtained as follows: 
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The expected values of the empirical models given 
that meteorological indexes are known ( x’s and 
z’s ) can be written as follows: 
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The parameters of the dynamic probabilistic model 
will be estimated by using the maximum li
estimation procedure.  The maximum likelihood 

nction for the Mutibernulli distribution is as 

 
where n is the total number of a
Since the probability model is a positive function, 
maximizing (13) is equivalent to maximizing its 
natural log.  It follows: 
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(14) the maximum likelihood estimators for a’
b’s can be obtained after maximizing the following 
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ere used as the initial point for the 
nonlinear optimization routine.  The Sequential 
Quadratic Programming (SQP) algorithm was 
selected to solve this problem.  SQP algorithm 
approximates the objective function by a quadratic 
function and constraints by linear functions.  Once, 
the approximation is complete the quadratic 

roblem is solved by using the Wolf simplex 
zaraa et al, 1993).  The next point is 

onsidered as a new initial point and a new 
approximation is d ed and solved.  
process is repeated until eventually a local 

aximum is found.   
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The constrained nonlinear optimization problem is 
solved by using the following strategy.  First, 
regression values obtained after fitting equations 
(6) and (7) w

p
method (Ba
c

m
 
3.2 Conditional Probability. 
 
Once the stage of a month is predicted the next 
task is to determine the expected amount of 
rainfall that will occur in the underlying month. It is 
required to derive the conditional probability of the 
rainfall given that the month is in a specific stage.  
Thus, three different populations are studied for 
every month and their corresponding distributions 
are developed.  In order to illustrate the 
methodology the month of May was arbitrarily 
selected.  Because of the limited space the 
suggested methodology will illustrate only  the 
stage of excess rainfall. The identified model for 
the scarce rainfall 
w
distribution. 
 
The histogram during the last 101 years shows 
evidence that excess of rainfall for the month of 
May in the Mayaguez station follows a gamma 
distribution (histogram was omitted).  Therefore, 
the conditional probability distribution for excess of 
rainfall can be written as follows: 
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nd zsmt is a random variable that represents the 

nd at the k  

a
amount of rainfall that will occur in the sth station 
given that the amount of rainfall will exceed the 
normal level in the mth month of the tth year; 

smtr is the unconditional rainfall value for the sth 
station on the month mth a th

year. tt λα  and  are the parameters of the 
dynamic probability model.  These parameters are 
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the changes may not be linear.  The dynamics of 
the model will be captured by means of time series 

teorological indexes.  The postulated 
empirical model for the excess of rainfa
of me

ll includes 



several processes generated by meteorological 

 

le, on the
 meteorolo

indexes. 
 

0czsmt = ∑
∈

−=++
Ckji

ijkijkijk Ltkwc
),,(

        ,ε    (19) 

where C is a set of subscripts associate with ith 
variab   jth month and the kth year;  wijk is 
the ith gical index that is highly correlated 
with excess of rainfall for jth month and for the year 
kth. 
 
The relationship between the probabilistic model 
(17) and the empirical model (19) can be obtained 
by computing the expected value of both models.  
Thus, the derived relationship can be written as 
follows: 
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Parameter estimation can be derived by the 
maximum likelihood function, which can be written 
as follows: 
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It should be noted that the strategy introduced in 
th
o

is study consists of determining the parameters 
f the probabilistic model using empirical 

equations.  Computing the natu
likelihood function and substituting equation (20) 
into equation (21) the problem reduces to find the 
alues ofv  α
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cess of rainfall and was defined on 
d wijk was introduced in equation 

(19), and t represents the time unit in years and L 
is the number lagged years.  
 
Equation (22) was maximized subject to constraint 
(23) by using the SQP algorithm.  This nonlinear 
optimization algorithm will converge to an i
local optimum if the initial point is not selected 
properly.  To accomplish convergence the initial 

carefully selected.  Thus, the initial 
c’s were obtained after solving the 

regression model represented by equation
Since the variance of the gamma distribution is 

iven by the following expression: 
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where 2
zS  is sample variance of the random 

variable zsmk.  It should be noted that alpha’s are 
initialized with a single value since the sample 
variance is a single value. 
 
4. RESULTS 
 

month during the last 101 years (1901 to 2001) 
was design

2λ
initial value for the lambdas were selected as
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A model for each rainfall station and for each 

ed.  Because of the paper space 
results are limited to Mayaguez station.  The 
model identification scheme is given for a single 
month and the cross-validation is provided for 40 
years (1961 – 2000). 
Rainfall data for the Mayaguez station and for the 

T

inches the considered 
al stage.  On the other 

infall amount is greater than 12.47 

month of May during 1901 to 2001 are exhibited in 
Figure 2.  he pink line exhibits the 90 percentile 
and the yellow line shows the 10 percentile.  Thus, 
if the amount of rainfall occurs in the range 

etween 3.96 to 12.47 b
month will be in the norm

and if the rah
inches the month will be in the excess stage, and 
if the rainfall amount is less that the 3.96 inches 
the month will be on scares stage. The 10 points 
that exhibit either excess or scarce rainfall reveals 
a gamma distribution, and the remaining 81 points 
follows a normal distribution (the histograms of 
these data were omitted). 
It should be noted that at every point in time a 
different model is identified.  A heuristic algorithm 
was developed to identify the best meteorological 
indexes that contribute to express the behavior of 



the rainfall for a specific month.  The designed 
algorithm includes three major steps. 
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igure 2.  Rainfall stages. 

(1) The algorithm generates 1,080 variables based 
on 9 meteorological indexes, twenty-four lagged 
values for each variable and five mathematical 
transformations are applied to each variable
24x5x9=1,080). (2) The number of variables that 

will be allowed in the model are fixed, depending 
on the available observations. For instance, 14 
variables were allowed to identify the model that 
determines the stage of the month.  Two variables 
were the maximum number of allowed variables 

r either excess or scarce model.  Fourteen
variables were allowed to identify a normal stage 
m
based on model fitting propertie
v
model. Thus, each rainfall model will select the 
best fourteen variables out of the 1,080 to explain 
the stage of the predicted rainfall.   
 
Table 1 shows the fitted model up to time 1989 to 
predict year 1990.  The identified model has 14 
variables that explain 83.22 % of the variability of 
y1,t variable, which was defined by equations (4).   
The code 2 in mathematical transformations 
means the values are squared and 1 means that 
no transformation was required.  
The first value of the fifth column of Table 1 is the 
estimated of 0a of equation (6) and from row 2 to 
row 15 are the a-estimates of equation (6).  Row 
16 of the fifth column is the estimated of 0b  in 
equation (7) and the remaining values of the fifth 
column are the b-estimated of equ
la

SQP and correspond to the optimal estimates of 
a’s and b’s. expressed in equations (15) and (16)  
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 Figure 3.  Normal stage model fitting (May: 1950-1990) 
 
Figure 3 shows the model fitting given that the 
month of May is in the normal stage.  The blue 
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Figure 4 shows the results of 40 years of cross-
validation, assuming that the model knows the 
correct stage of the month.  The 
d
predict five month ahead what will be the expected 
amount of rainfall given that the stage of next May 
is known without error.  
 
Calculations of the month stages require results 
from a nonlinear optimization routine.  Once the 
model determines the m
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of the month is known.  
 

 
 
Figure 4.  Cross-validation. 
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of May and the preliminary results indicate that the 
algorithm is able to predict with a reasonable
accuracy if the stage of the month is precisely
known.  If the model performs mistake on the
stage of the month the prediction may not be
accurate.  Thus, some effort is required to improve 

0.00

2.00

4.00

6.00

8.00

10.00

195 1980 1990ear

 i
ch

es

 
The proposed prediction 
c
given that the stage
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the prediction of the stages. 
 
The proposed algorithm is still in the process of 
development and exploration.  It was observed 
that in a sample of ten years the algorithm 
predicted without error 80% of the times the month 
stage. 
 
One of the major limitations of the proposed 
algorithm is the large computational effort that is 
required to derive predict
c
obtain twelve months predictions.  The proposed 
algorithm processes the complete set of 
information up to December and it is able to 
predict the complete next year.  Thus, to predict 
January
F
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