
PLUG AND PLAY SCIENTIFIC GRAPHICS WITH SGT

Donald W. Denbo*

Joint Institute for the Study of Ocean and Atmosphere, University of Washington, Seattle, WA

15.12
1. INTRODUCTION

The Scientific Graphics Toolkit (SGT) (Denbo, 2001;
Denbo, 2000; Denbo, 1999; Denbo, 1997) is a library of
java graphics classes which facilitates the development
of platform independent Java applications and web
applets to produce highly interactive, flexible, publication
quality, object-oriented graphics of scientific data. Plot
types supported include contour, line, point, and vector,
plot features include user settable or automatically
scaled axes, sophisticated, automatically self-scaling
time axes, mouse-movable objects (labels, line keys,
icons), customizable objects, automatic generation of
legends to explain the data being displayed. Although
use of SGT requires detailed expertise in object oriented
java programming, it has proven popular with these spe-
cialists in developing graphics applications. Since March
2000, there have been over 11,000 downloads of SGT
source, class, and javadoc jar files (Java archives) by
3955 unique sites in 65 countries, and was featured in
JavaWorld magazine in March 2001.

We are making this powerful graphics toolkit signifi-
cantly more accessible to a far wider community of non-
expert users by creating easy-to-use SGT JavaBeans.
SGT JavaBeans is easier for an expert programmer to
utilize, and moreover, it gives beginner and intermediate
Java developers access to these powerful scientific
graphics in their Java applets, applications, and servlets,
without the steep learning-curve required to use SGT
directly. See http://www.epic.noaa.gov/java/sgt for more
information and download links.

2. DESIGN GOALS

We have begun the task of creating easy-to-use SGT
JavaBeans from the Scientific Graphics Toolkit (Figure
1). SGT JavaBeans are be easier for an expert program-
mer to utilize, and moreover, gives beginner and inter-
mediate Java developers access to these powerful
scientific graphics in their Java applets, applications, and
servlets, without the steep learning-curve required to use
SGT directly. Developing JavaBean components from
SGT classes involves adding support for property man-
agement, introspection, event handling, persistence, and
application builders. Property management involves
handling all interactions relating to the state of the bean
(a JavaBean class) and constitutes the data part of a
bean's structure. The introspection facilities are the

mechanism by which components make their internal
structure readily available to the outside world. The
event handling facilities specify an event-driven architec-
ture that defines the interactions among beans and appli-
cations. The persistence facilities in the JavaBean API
specify the mechanism by which beans are stored and
retrieved to a specific internal state and appearance.
Finally, the JavaBeans API provides the facilities neces-
sary to edit and manipulate beans using visual applica-
tion builder tools.

We will include “wizard” support for incorporating and
customizing the scientific graphics classes from an Inte-
grated Development Environment (IDE), Rapid Applica-
tion Development (RAD) tool, or the freely available
Bean Builder (see below). This means that a novice pro-
grammer will be able to create applications by using a
simple wizard user interface, reducing the amount of
detailed knowledge required to effectively use the scien-
tific graphics Java Beans. A wizard is a user interface
that takes a user through a step-by-step process to cus-
tomize a bean. The “wizard” will be used for incorporat-
ing and customizing the scientific graphics classes. By
providing wizards, we reduce the amount of detailed
knowledge required to effectively use the scientific
graphics beans. With the wizard, SGT JavaBeans
becomes “plug and play” java graphics.

JavaBeans were chosen to implement SGT compo-
nents because they are a Java standard, platform inde-
pendent, and supported by most Java IDE and RAD
software. Presently Java is the only programming envi-
ronment that is both cross platform and has multiple ven-
dors providing development software.

3. JAVABEANS OVERVIEW1

JavaBeans brings component technology to the Java
platform. With the JavaBeans API you can create reus-
able, platform-independent components. Using Java-
Beans-compliant application builder tools, you can
combine these components into applets, applications, or
composite components. JavaBean components are
known as Beans.

Beans expose their features (for example, public
methods and events) to builder tools because feature
names adhere to specific design patterns. A “Java-

1. Material excerpted and edited from http://
java.sun.com/docs/books/tutorial/java-
beans/index.html

* Corresponding author address: Donald W. Denbo,
NOAA/PMEL/OCRD, 7600 Sand Point Way NE, Seattle,
WA 98115; e-mail: dwd@pmel.noaa.gov

http://www.epic.noaa.gov/java/sgt
http://java.sun.com/docs/books/tutorial/javabeans/index.html
http://java.sun.com/docs/books/tutorial/javabeans/index.html

Beans-enabled” builder tool can then examine the
Bean's patterns, discern its features, and expose those
features for visual manipulation. A builder tool maintains
Beans in a palette or toolbox. You can select a Bean
from the toolbox, drop it into a form, modify it's appear-
ance and behavior, define its interaction with other
Beans, and compose it and other Beans into an applet,
application, or new Bean. All this can be done without
writing a line of code.

The following list briefly describes key Bean concepts.
• Builder tools discover a Bean's features (that is, its

properties, methods, and events) by a process known
as introspection.

• Properties are a Bean's appearance and behavior
characteristics that can be changed at design time.

• Beans expose properties so they can be customized
at design time.

• Beans use events to communicate with other Beans. A
Bean that wants to receive events (a listener Bean)

registers its interest with the Bean that fires the event
(a source Bean).

• Persistence enables Beans to save and restore their
state.

• A Bean's methods are standard Java methods, and
can be called from other Beans or a scripting environ-
ment. By default all public methods are exported.

Although Beans are designed to be understood by
builder tools, all key APIs, including support for events,
properties, and persistence, have been designed to be
easily read and understood by human programmers as
well.

Bean Builder. The Bean Builder is a freely available
tool which allows the visual assembly of an application
by instantiating and setting the properties of components
based on the JavaBeans component architecture. The
dynamic behavior of the application is specified by “wir-
ing” relationships that represent events handlers and
method calls between the objects in an application. The

Figure 1. Examples of SGT capabilities.

http://java.sun.com/products/javabeans/beanbuilder/1.0/docs/guide/tutorial.html

state of this application is saved to and restored from an
XML format. An application can be constructed using the
Bean Builder without having to write a line of source
code.

4. FUTURE DIRECTIONS

We will also include “wizard” support for incorporating
and customizing the SGT Beans from a IDE or RAD tool.
This means that a novice programmer will be able to cre-
ate applications by using a simple wizard user interface,
reducing the amount of detailed knowledge required to
effectively use the SGT Beans. With the wizard, SGT
Beans become “plug and play” java graphics.

Acknowledgment. This publication was supported by
the Joint Institute for the Study of the Atmosphere and
Ocean (JISAO) under NOAA Cooperative Agreement
#NA67RJ0155, Contribution #946. PMEL contribution
2522. The views expressed herein are those of the
author(s) and do not necessarily reflect the views of
NOAA or any of its subagencies. This work was funded
by NOAA’s HPCC program.

5. REFERENCES

Denbo, D.W., 2001. Interactive graphics toolkit for Java
applications and web applets. 17th Conference on
Interactive Information and Processing Systems (IIPS)
for Meteorology, Oceanography, and Hydrology, AMS,
14-19 January 2001, Albuquerque, NM, 372-375.

Denbo, D.W., 2000. The Scientific Graphics Toolkit. Pro-
ceedings of Oceans '99 MTS/IEEE Conference, 13-16
September, Seattle, WA (on CD).

Denbo, D.W., 1999. Using Java graphics to display
ocean observations in NOAAServer. In 15th Interna-
tional Conference on Interactive Information and Pro-
cessing Systems (IIPS) for Meteorology,
Oceanography, and Hydrology, AMS, Dallas, TX, 10-
15 January 1999, 442-444.

Denbo, D.W., 1997. NOAAServer Graphics Engine
Architecture. Presented at NOAA WebShop97, Octo-
ber 22-23, 1997, Silver Spring, Maryland.

