
J1.2                VALIDATION OF AN OPERATIONAL GLOBAL PRECIPITATION ANALYSIS AT 
SHORT TIME SCALES 

 
 

F. Joseph Turk 
Marine Meteorology Division, Naval Research Laboratory, Monterey, California 93943 

 
Elizabeth E. Ebert 

Weather Forecasting Group, Bureau of Meteorology Research Centre, Melbourne, Victoria 3001, Australia 
 

Hyun-Jong Oh and Byung-Ju Sohn 
School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, Korea 

 
Vincenzo Levizzani 

CNR-Institute of Atmospheric and Climate Sciences, Bologna, Italy 
 

Eric A. Smith 
NASA-Goddard Space Flight Center, Greenbelt, Maryland 20771 

 
Ralph Ferraro 

NOAA-National Environmental Satellite Data Information Center, Camp Springs, Maryland 20746 
 

 
1. INTRODUCTION 
 
The past two decades have witnessed the rapid 
evolution of the low Earth-orbiting (LEO) passive 
microwave (PMW) imaging sensor from a research 
setting into routine operational settings.  The 
conically-scanning, sun-synchronous orbiting Special 
Sensor Microwave Imager (SSMI) imagers onboard 
the Defense Meteorological Satellite Program 
(DMSP) satellites launched between 1987 and 1999 
were joined by the joint United States/Japan Tropical 
Rainfall Measuring Mission (TRMM) Microwave 
Imager (TMI) in 1997 (Kummerow et. al, 1998, 
2000), and the Advanced Microwave Scanning 
Radiometer (AMSR-E) aboard the Earth Observing 
System (EOS) Aqua in 2002.  The spatial resolution 
of the instantaneous precipitation estimate derived 
from these sensors is primarily determined by the 
diffraction-limited, coarser field-of-view (FOV) low 
frequency, emission-based window channels (10-19 
GHz) in the over-ocean situation, and from the 
narrower FOV, higher frequency, primarily 
scattering-based channels (37-85 GHz) over land 
(Spencer et. al, 1989).  A variety of conditions make 
precipitation problematic to validate.  The changing 
time and three-dimensional spatial scales of global 
precipitation processes, the intermittent and unequally 
spaced satellite revisit (ie., the time between 
successive overpasses), the instantaneous nature of a 
moving-platform satellite observation, the 
characteristics of the validation system, among 
others, each effect must considered in order to 
properly derive and interpret validation statistics.  To 
attempt to validate a satellite-based precipitation 
analysis at a daily or sub-daily time scale and a sub-
degree spatial scale requires a validation system with 

a dense, homogeneous spatial coverage and a time1 
sampling rate fast enough (and extended over a long 
enough period of time) to coordinate meaningful 
comparisons with the instantaneous nature of 
moving-platform satellite-based observations, and 
some means to supplement (or account for) the 
intermittent LEO overpass schedule. 
 
Increasingly, the need and future planning for various 
sub-daily time and sub-degree space scale global 
precipitation products has gained prominence, largely 
driven by hydrological and Numerical Weather 
Prediction (NWP) improvements and applications.  
For example, a typically quoted goal of the proposed 
Global Precipitation Mission (GPM) is to collect 
sufficient instantaneous observations from a 
constellation of LEO platforms over a time window 
sufficient to avoid diurnal aliasing (typically three 
hours or less), with a 0.1-degree global resolution 
(Fleming, 2002).  The Advanced Microwave 
Sounding Unit-B (AMSU-B), an across-track 
scanning humidity sounder onboard the National 
Oceanic and Atmospheric Administration (NOAA) 
operational LEO satellites, has an operational rainfall 
product which is distributed by the National 
Environmental Satellite Data Information Service 
(NESDIS) Microwave Surface and Precipitation 
Products System (MSPPS) (Weng et.al, 2002).  
Overall, when all of the above-mentioned LEO 
satellite platforms are taken into account (three 
DMSP, one TMI, and three NOAA as of autumn 
2002), orbit calculations show that the resultant 

                                                 
1 Corresponding author address: Dr. F. Joseph Turk, 
Naval Research Laboratory, Marine Meteorology 
Division, 7 Grace Hopper Avenue, Monterey, CA  
93943 USA; email: turk@nrlmry.navy.mil. 



worst-case revisit still hovers near six hours in the 
tropical latitudes. 
 
With the fundamental intermittent nature of PMW 
observations, the idea of capitalizing on the frequent, 
routinely scheduled infrared (IR) observations 
available from geostationary operational 
meteorological satellite platforms has received 
increasing attention in recent years, especially since 
the deployment of the first of the Geostationary 
Orbiting Earth Satellite (GOES) I-M imagers in 1994.  
The idea behind combining these sensor types was 
investigated soon after the public availability of the 
DMSP SSMI data in the early 1990s (Adler et.al, 
1993; Vicente, 1994; Levizzani et.al, 1996) and has 
continued with other varied efforts (Kidd et.al, 1998; 
Miller et.al, 2000; Todd et.al, 2001; Morales and 
Anagnostou, 2002; Dietrich et.al, 2001; Grecu et.al, 
2000; Ba et. al, 2001).  In August 2002, the first of 
the Meteosat Next Generation (MSG) geostationary 
platforms was successfully launched, carrying as its 
core instrument the Spinning Enhanced Visual and 
Infrared Imager (SEVIRI), a 12-channel imager. 
(Schmetz et. al, 2002).  As part of its Fifth 
Framework Program, the European Commission (EC) 
has funded the EURAINSAT program, which is 
developing (among others) a blended SEVIRI-PMW 
rainfall technique (Levizzani et. al, 2002) as its core 
rainfall algorithm to assimilate rainfall into mesoscale 
forecast systems and to provide timely data to civil 
protection agencies.  Here, we define a blended 
satellite technique as a method which joins together 
direct (PMW-based rainfall observations) and indirect 
(brightness temperatures from IR sensors) datasets, 
gathered at different space and time scales, under a 
scale transformation and normalization process to 
produce a final rainfall product.  The blended 
technique described in this article was initially 
developed in 1998 at the Naval Research Laboratory 
(NRL) in an effort to improve upon 2-3 day hurricane 
track forecasting (Turk et.al, 2000).  While the core 
of the technique has been improved somewhat since 
then (to 3-hourly and 0.1-degree), and used in several 
applications (Krishnamurti et.al, 2001; Grose et.al, 
2002), it has never undergone a thorough validation. 
 
This article focuses specifically upon validation and 
performance of the NRL blended technique at various 
space and time scale combinations, using raingauge 
data from two rain gauge networks, the densely 
spaced, 1-minute reporting Korean Meteorological 
Administration (KMA) Automated Weather Station 
(AWS) network and the daily analysis produced by 
Australian Bureau of Meteorology (BOM) 
continental raingauge system.  The need for 
validation at various space/time scales is driven by 
NWP model requirements, where precipitation is a 
diagnosed quantity (rather than a prognostic one), and 
various assimilation techniques have been developed 
which handle precipitation data.  Variational data 

assimilation systems require knowledge of the 
precipitation estimation uncertainty and how it is 
correlated in space and time (Bauer et.al, 2002).  The 
error covariances between the rainfall observations 
and the model background field determine how the 
observation data is allowed in the model analysis.  To 
attempt to characterize the precipitation analysis 
requires a validation system with a dense, 
homogeneous spatial coverage and a time sampling 
rate large enough (and extended over a long enough 
period of time) to permit meaningful comparisons 
with the instantaneous nature of moving-platform 
satellite-based observations.  The AWS data was 
averaged to various combinations of sub-daily and 
sub-1-degree space and time scales in order to 
minimize, but not totally account for, fundamental 
discrepancies between a satellite-based and a 
raingauge-based observation (Oh et. al, 2002) and 
presents, as a first attempt, a means to produce 
estimates of fine spatial scale and short time scale 
satellite-derived precipitation error statistics. 
 
2.   BLENDED TECHNIQUE DESCRIPTION 
 
In order to blend the disjoint LEO PMW and 
geostationary IR measurements in an automated and 
adaptive manner, the blended technique starts by 
subdividing the Earth into a 2-degree/pixel grid (60 
lines by 180 samples) with a finer, 0.25-degree/pixel 
grid (480 lines x 1440 samples) nested inside it (the 
reason for these values are discussed below) between 
60N and 60S.   
 
 

 
 
 
Figure 1.  Some factors influencing the necessity 
averaging to account for spatial and temporal offsets, 
when aligning geostationary IR and LEO PMW 
datasets on a per-pixel basis. 
 
 
As new PMW datasets arrive, currently one orbit per 
satellite, the PMW-derived rainrate pixels are paired 
with their time and space-coincident geostationary 
11-um IR brightness temperature (TB) data, using a 



15-minute maximum allowed time offset (denoted by 
∆t) between the pixel observation times and a 10-km 
maximum allowed spatial offset (denoted by ∆d) as 
depicted in Figure 1.  Prior to this, the geostationary 
data are averaged to the approximate resolution of the 
PMW rainfall datasets (30-km for SSMI, 10-km for 
TMI, and between 15-50 km for AMSU-B depending 
upon scan position), and parallax-induced geolocation 
displacements are accounted for using the procedure 
of Vicente et. al. (2002).  Each collocated data 
increments histograms of the IR TB and the PMW 
rain rate in the nearest 2o box, as well as the eight 
surrounding boxes (this overlap assures a fairly 
smooth transition in the histogram slopes between 
neighboring boxes).  As soon as a 2o box is refreshed 
with new LEO data, a probabilistic histogram 
matching relationship (Calheiros and Zawadski, 
1987) is updated using the PMW rainrate and IR TB 
histograms, and a TB-R lookup table is created.  To 
assure that the most timely rain history is maintained, 
the histograms of these coincident data are 
accumulated backwards from the current clock time 
(the �look-back� time) until the spatial coverage of a 
given 2-degree box exceeds a 90 percent coverage 
threshold (the inner 0.25-km/pixel mesh is fine 
enough to enable an approximation of the percent 
coverage).   
 
Figure 2 shows the overall percentage of 2-degree 
boxes that reach this coverage threshold as a function 
of the look-back time and the type of LEO satellites 
used in the coincident pixel alignment procedure.  
The addition of the three AMSU-B instruments to the 
three SSMIs and the TMI (7 satellites, dotted line) 
permits 90% of the Earth between 60S-60N latitude 
to be covered with coincident data observations 
within 15 hours of look-back time, with an average of 
about 2000 coincident observations per box.  With 
three SSMIs and the TMI (4 satellites, dashed line), 
the same total Earth coverage is reached after 30 
hours, but with an average of 2500 coincident 
observations per 2-degree box (this is due to the fact 
that the ASMU-B data are coarser than the TMI, and 
although they may arrive prior to the TMI data, they 
are less in number).  The bottom panel demonstrates 
that for 90 percent Earth coverage, the average age of 
the data in each 2-degree box is about 4 hours when 
the 7-satellite combination is used, significantly 
shorter than the 8-hours in the 4-satellites case and 
10-hours in the SSMI-only (3 satellites) case.  For 
comparison, Figure 2 also illustrates these same 
statistics, but with a smaller maximum allowed ∆t=5 
minutes.  Under these circumstances, it takes about 
35 hours to achieve the 90% Earth coverage for the 7-
satellite case and the average age of these data are 
about 10 hours.  While the smaller time offset is 
preferred in order to capture as nearly time-coincident 
data as possible, with the current 7-satellite 
configuration it comes with the expense of increased 
age of coincident data observations.  With this 

inherent tradeoff in mind, all results discussed 
hereafter used ∆t=15 minutes and ∆d=10 km in the 
PMW-IR coincident data alignment procedure.   
 

 
 
Figure 2.  Left column: (a) Percentage of 2-degree 
boxes covered with time/space coincident IR-PMW 
observations over the Earth from 60S-60N latitude, as 
a function of the look-back time, and the number and 
type of Low Earth Orbiting (LEO) satellite sensors 
used.  The look-back time begins at 09 UTC on 3 
October 2002 and runs backwards.  (b) Average 
number coincident observations in each 2-degree box.  
(c) Average age in hours of the coincident 
observations in each 2-degree box.   The maximum 
allowed time and space offsets between the LEO-
based microwave sensor pixel and the geostationary 
IR pixel are 5 minutes and 10 km, respectively.  
Right column:  Same as left side panels, but for a 
maximum allowed time offset between the LEO-
based microwave sensor pixel and the geostationary 
IR pixel of 15 minutes. 
 
 
This lookup table update process is constantly 
ongoing with operationally arriving LEO and 
geostationary data.  The transfer of this information 
to the stream of steadily arriving geostationary data is 
then a relatively simple lookup table procedure.  For 
each newly arrived geostationary dataset, the IR 
channels are map-registered onto a global, 0.1-degree 
rectangular map projection for all pixels whose 
satellite zenith angle is less than 70 degrees.  For each 



0.1-degree pixel, the closest 2-degree histogram box 
and the eight surrounding boxes are located, and an 
inverse-distance weighted average is computed from 
these nine lookup table-derived rainrates (this 
minimizes discontinuities across histogram box 
boundaries).  Lastly, NWP forecast model 850 hPa 
wind vectors from an NWP forecast model are 
combined with a 2-minute topographic database, and 
a correction is applied in regions of likely orographic 
enhancement, following the formulation of Vicente 
et. al (2002).   The use of a common 0.1-degree 
global map projection for all geostationary satellites 
greatly speeds up the computation of rainfall 
accumulations, and compensates for the coarser 
resolution of geostationary IR data at higher latitudes.  
At specified synoptic time intervals (usually every 
three hours), the rainfall accumulations are updated as 
far back in time as desired by backwards time-
integrating. 
 
The blended satellite technique is autonomous and 
self-adapting, and the adjustable parameters are the 
histogram box size, allowable pixel collocation time 
and space offsets (∆t and ∆d, respectively), and 
minimum spatial coverage of each box required to 
initiate its lookup table update.  As additional LEO 
satellites are added to the blending procedure, 
presumably the histogram box size and allowable 
space/time offsets can be made smaller, which should 
better capture individual smaller-scale rainfall 
systems, although this remains to be examined when 
data from upcoming LEO platforms are available.  In 
operational settings, one or more LEO datasets may 
be missing or arrive later than a data cutoff time.  To 
limit this, we set a maximum look-back time of 24-
hours, which may temporarily disable the blended 
technique over certain parts of the Earth where the 
overall LEO revisit time is the longest.  Currently, 
visible data are not used in this technique since we 
have not yet sufficiently examined how they can be 
seamlessly used across the day-night terminator.  We 
have resorted to using only the common 11-um 
channel at this point since it is common to all current 
geostationary satellites, but other formulations should 
be used to relate the PMW and IR data to take full 
advantage of the expanded thermal and solar spectral 
capabilities offered in the MSG and GOES-R series 
of geostationary satellites.  Already, Marzano et.al. 
(2002) have tested multivariate probability matching 
and nonlinear multiple regression techniques for the 
PMW-IR blending.  We are currently examining the 
use of the Moderate Resolution Imaging 
Spectrometer (MODIS) 6.7 water vapor channel in 
combination with its 11-um in order to retrieve 
information when the cloud top is near or above the 
tropopause.  While the technique may seem 
computationally burdensome, we note that we 
process all 12 (currently 7 LEO and 5 GEO) satellites 
and the 3-hourly interval accumulation updates (run 

out to 72-hours) on a single dual-processor Linux-
based PC. 
 
3.  VALIDATION WITH THE KMA AWS 
NETWORK 
 
The Korean Meteorological Agency (KMA) 
maintains an operational, densely spaced Automated 
Weather Station (AWS) over the southern Korean 
Peninsula, consisting of nearly 500 tipping-bucket, 
uniformly-spaced, one-minute updating rain gauges 
(approximately 40 gauges per 1-degree box).   Figure 
3 depicts the AWS grid (not all stations are plotted). 
 
 

 
 
Figure 3. Depiction of the Automated Weather 
Station (AWS) operational rain gauge network, 
operated by the Korean Meteorological Agency.  The 
density is nearly homogeneous across the southern 
Korean peninsula with 40 gauges per 1-degree box, 
each reporting at a 1-minute time update resolution.  
 
 
AWS data were collected during June-August 2000 
along with the individual hourly, instantaneous 
rainfall datasets produced by the blended satellite 
technique (the GMS-5 satellite is the only 
geostationary satellite that provides coverage and its 
refresh rate is hourly beginning at 30 minutes after 
each hour, and the Korean Peninsula is imaged about 
8 minutes after the frame start time).  Figure 4 depicts 
the shaded color maps of the mean monthly rainrate 
over the Southern Korean peninsula during June, July 
and August 2000.  
 
Due to the inhomogeneity of the rain within the 
spatial averaging box and very small areas 
represented by individual gauges, a direct comparison 
of instantaneous (ie, pixel-based) satellite-based 
retrievals and gauges is inherently limited.  For 
intermittent and sporadic rain events, the rain may 
fall between but not into individual gauges, or the 
rainfall pattern may evolve and move between the 
gauge locations. 
 



 
 

 
 
Figure 4.  Maps of the monthly mean rainrate over the South Korean peninsula for June, July and 
August 2000. 



Using the AWS network and various IR-based 
rainfall techniques over a one-month period, Oh et.al 
(2002) investigated the impact of the spatial rain 
inhomogeneity by analyzing the number of rain-
detected gauges in individual 1-degree boxes.  They 
found that the satellite algorithm validation was more 
likely to fail for sporadic and weak rain events when 
the number of rain-detecting gauges per 1-degree box 
was less than 15.  However, in some cases, isolated 
convective rain events may be characterized by a 
small number of rain-detecting gauges, so a simple 
minimum-gauge criterion is not necessarily sufficient 
in all cases.  In the discussion to follow, it must be 
therefore be remembered that unambiguous 
interpretation is not always possible with gauge-
satellite comparisons, especially for sporadic rain 
events. 
 
The instantaneous estimate from the blended satellite 
technique essentially consists of transferring the past-
time PMW-IR history (via the lookup tables) to 
newly gathered IR radiances, whose information 
content originates at or near the physical cloud top 
height, whereas the gauge data is a purely ground-
based observation.  Therefore, to account for the 
fallout time of the hydrometeors, the gauge data were 
first averaged over time windows varying between 
+/-1 to +/-30 minutes, centered about the GMS-5 
observation time.   Then, at each spatial resolution, 
these data were time-integrated over various time 
intervals ranging from one hour (the minimum time 
interval) to 30 days.  That is, the original data were 
fixed at one spatial scale and then integrated over the 
various time scales, then repeated for the next spatial 
scale, and so on.  This allows the blended technique 
validation to be performed in a two-dimensional, 
space-time fashion.   Most importantly, the 1-minute 
time resolution of the KMA network allows 
individual, instantaneous satellite pixels to be paired 
in time with the corresponding rain gauge pixels prior 
to any temporal averaging. 
 
For example, Figure 5 shows the scatter plots of the 
blended satellite (RS) vs. gauge (RG) comparison at a 
1-degree spatial scale and for six time scales ranging 
from 1-hour to 24-hours, where the AWS-GMS time 
window was fixed at +/-10 minutes.  As expected, the 
correlation improves with longer time averaging, but 
the bias remains near zero or slightly negative, with a 
large variance.  The 24-hour plot demonstrates that 
when RG < 1 mm hr-1, the blended technique often 
assigned light rain to regions where RG = 0.  While it 
is difficult to unravel an exact cause of these 
characteristics, it is possible that this is related to the 
PMW algorithm rain/no-rain screening.  Over land, 

the NESDIS operational SSMI algorithm is used in 
the Version-5 TMI 2A12 rainfall algorithm 
(Kummerow at.al, 2001).  Under certain conditions, 
light rain can be misidentified over a variety of Earth 
surfaces that appear to scatter radiation similar to a 
precipitating cloud (Bauer et.al, 2000; Conner and 
Petty, 1998; Ferraro et. al, 1998).  In the automated 
histogram matching procedure, these (falsely-
identified) light rain pixels get paired with their 
corresponding IR TB, which is often larger (warmer) 
than other localized pixels that were correctly 
identified as rainfall.  The end result can at times be a 
very light rainfall (under 0.5 mm hr-1) that incorrectly 
gets assigned to regions in subsequent IR imagery, 
until these falsely-identified PMW points are 
discarded from the suspect 2-degree histogram box 
(usually after the next LEO overpass).   The opposite 
effect also occurs, when the PMW algorithm rain/no-
rain screen fails to identify regions of light rain.  That 
is, these no-rain pixels get paired with a smaller 
(colder) IR TB compared to other localized pixels.  
The result is that the zero-rain IR temperature 
threshold gets assigned too small of a value and the 
lookup table assigns zero or a very small value to 
subsequent IR imagery.   While we cannot say for 
certain that misses and false alarms by the PMW 
screening algorithm are the cause of this, one can 
state that owing to its very nature, any caveats of the 
PMW instantaneous rain algorithms eventually 
manifest themselves in the blended technique results.  
The amount of time that these (or other) PMW data 
are retained in the blend is determined by the tuning 
parameters described in Section 2 (box size, percent 
coverage, ∆t and ∆d). 
 
Figures 6a and 6b depict the results from the analysis 
at this and other space and time scales in a two-
dimensional format, where the spatial average and 
averaging period determine the abscissa and ordinate, 
respectively.  The correlation, mean bias and root-
mean-square error (RMSE) are each contoured for 
AWS time windows (gauge averaging time centered 
about the GMS observation time) of +/-1 (Figure 6a) 
and +/-10 minutes (Figure 6b) (other time windows 
are not illustrated here).   The different time windows 
produce different results, owing to the variable fallout 
times of the hydrometeors from within the cloud, and 
the increased number of gauges in the average as the 
window is widened.  However, there appears to be a 
sharp improvement when the time window is 
widened to +/-10 minutes, which a typical 
hydrometeor fallout time in tropical clouds (Soman 
et.al, 1995) and from this point on the +/-10 minute 
AWS-GMS time window is assumed.

 



 
 
 
Figure 5. Scatter plots of the observed KMA AWS rain gauge (RG) and blended satellite technique-derived (RS) 
average rate rates at a fixed 1-degree resolution spatial average over Korea.  From upper left, the six panels are 
for time averages of the AWS data over 1-hour, 2-hour, 3-hour, 6-hour, 12-hour, and 24-hour time intervals.  A 
+/-10 minute window was used to average the AWS gauge data, centered about the time of the GMS satellite 
observation of Korea. 
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Figure 6a.  Space-time contour plots of the correlation coefficient, root mean square error and mean bias for an 
AWS time window average of +/-1 minutes.  The time window is centered about the time of the GMS satellite 
observation of Korea.  The abscissa and ordinate of each contour plot denotes the spatial and temporal scales, 
respectively, used to average the gauge data and the blended satellite technique estimated rain. 
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Figure 6b.  Same as Figure 6a, but the AWS time window average is expanded to +/-10 minutes. 

 
 



As expected, all three parameters improve as either 
the averaging period is increased or the grid size is 
coarsened.   The contours do not flow smoothly at the 
longest time intervals due to the resultant small 
number of data points available from the finite 3-
month period.  Likewise, the small size of the Korean 
Peninsula produces a small number of data points 
when the data are averaged over the coarsest space 
scales.  The blended technique is biased slightly 
negative (-0.1, or 10% low) once the time interval 
exceeds 3 days, falling to about �0.35 (35% low) at 3-
hour/0.25-degree scales.  One possible explanation 
for the bias behavior is that as the time scale is 
shortened, extreme heavy precipitation events are less 
likely to be captured by a LEO overpass.  Since the 
nature of the blended technique is to retain some of 
the most recent rainfall history (a residual �memory 
effect�), there is a gradually increasing (rather than 
sudden) negative bias.  The RMSE is about 0.5 mm 
hr-1 for time intervals exceeding 3 days, and degrades 
to near 3.5 mm hr-1 at 3-hour/0.25-degree scales.  The 
correlation coefficient can be as high as 0.8 for 12-
hour averages, but only when the grid size exceeds 
2.5 degrees.  Most notably, the correlation begins to 
fall off quickly once the time average drops below 
one day, and/or the spatial scale falls under 1-degree, 
and this same sort of behavior is evident in the 
RMSE, and less so in the mean bias.  This could be 
because the RMSE is more affected by the relatively 
few large precipitation events, whereas the 
correlation is affected by the large number of zero or 
near-zero rain rate points.  As the time and/or space 
scale shrink, there are fewer heavy rain events, and 
the large number of zero or small rain rates, which 
show a large scatter, dominates the correlation 
coefficient. 
 
Inherent in the inner workings of this type of blended 
technique is a residual �memory effect� whereby a 
certain amount of previous-time PMW information is 
retained in the statistical blend, and provided to 
subsequent geostationary update cycles.  The effect is 
dependent upon the LEO revisit time, which at the 
latitude of Korea is about 12-hours (worst case) for 
the 4-satellite (3 SSMI and the TMI) constellation.  
As mentioned, the current 2-degree box size for the 
statistical matching represents a tradeoff between the 
overall revisit from the intermittently-spaced LEO 
satellite constellation (longer revisit requires a larger 
box size) and the need to capture �localized� rainfall 
characteristics and still have a sufficiently large 
number data points to perform a statistical histogram 
matching (small scale rainfall requires a smaller box 
size).   The rapid decay of the correlation and RMSE 
statistics below the daily time scale may be reflecting 
the fact that below this scale, the blended technique 
estimates are often tuned with rainfall information 
from a somewhat earlier stage (several hours earlier) 
in the localized rainfall evolution, and don�t always 
correlate well with the current rainfall evolutionary 

state.  At time scales greater than one day, the 
correlation remains quite high even at the finest 
spatial scales, suggesting that this type of memory 
effect may average away past a certain time scale.  
While this is a plausible explanation, there are 
certainly other factors at work, most notably the 
nature of sporadic and intermittent rain evolving over 
a limited number of gauges.  By analyzing the three 
month period, there are many short time-scale periods 
that are averaged together, some with intermittent, 
sporadic rainfall and others with more widespread 
rainfall, therefore the gauge-satellite effect should be 
averaged to some undetermined extent.   Even so, we 
can state that below some minimum combination of 
space and time scales, there is most likely 
dependence between the overall LEO constellation 
revisit and the performance of this type of blended 
technique. 
 
For NWP rainfall data assimilation requirements, the 
rainfall estimation error should be specified as a 
function of the average rain rate over the estimated 
space-time interval (e.g, percentage error at 1, 5, 10 
mm hr-1 , etc). NWP variational assimilation 
techniques typically are based upon a minimization 
function, which requires knowledge of both the 
forecast and the observation (rainfall analysis) errors.  
If the forecast error is large, then the observed rainfall 
analysis will be increasingly allowed to contribute to 
the model initialization, and vice versa.  The 3-
hour/0.25-degree RMSE of 3.5 mm hr-1 was 
computed for all rain rates, and this would translate to 
a 35% error at 10 mm hr-1. 
 
The KMA gauge analysis provided validation over 
the three month summer interval, which are indicative 
of summer monsoon wet conditions, and were done 
during a time when the AMSU-B sensors had not yet 
been added to the LEO constellation used in the 
blended technique.  To examine the overall 
characteristics and performance of the technique, a 
longer validation time interval is needed, preferably 
one that covers both tropical and mid-latitude rainfall 
regimes and summer and winter seasons.  In the 
following section, we present validation statistics 
over the Australian continent from one calendar year, 
during which time two of the AMSU-B satellites 
were incorporated into the blended technique.  In 
doing so, our intent is not to develop nor validate a 
climatological rainfall technique, but rather to use the 
validation results from daily and monthly time scales 
to examine characteristics and areas where the 
blended technique has strengths and other areas 
where it needs improvement. 
 
4.   VALIDATION WITH THE AUSTRALIAN 
CONTINENTAL ANALYSIS 
 
The Australian Bureau of Meteorology (BOM) 
maintains a national rain gauge network consisting of 



over 6000 sites that measure 24-hour accumulated 
rainfall at approximately 9 AM local time.  On 
average, 2000 of these stations report daily rainfall in 
near real time to the BOM rainfall analysis system.  
The objective analysis scheme is based upon a multi-
pass inverse-distance weighting scheme to map the 
rainfall data onto a 0.25-degree grid over the 
Australian continent and Tasmania (Weymouth et. al, 
1999).  Figure 7 displays the density of the gauges, 
which ranges from more than 50 per 1-degree grid 
box in the populated southeast to no gauges at all in 
some interior regions.  The purpose of this section is 
to examine the characteristics of the blended 
technique at daily and monthly time scales over both 
winter and summer seasons, tropical and mid-latitude 
rainfall regimes, and regions of orographic uplift (e.g, 
western Tasmania, where the average annual rainfall 
exceeds 3 m).   
 
 

 
 
Figure 7.  Density of rain gauges within 1-degree 
boxes comprising the continental rain gauge network 
operated by the Australian Bureau of Meteorology 
(BOM).  The numbers correspond to 1, 2, 3, etc. 
gauges per box, while the letters correspond to A=10, 
B=11, C=12�Z=35+ gauges/box. 
 
 
The unique yearly climatology throughout the 
Australian continent makes this possible.  This was 
carried out for twelve months beginning in April 
2001, during a time when the AMSU-B data from 
NOAA-15/16 (NOAA-17 became available in mid-
2002) were added to the LEO constellation used to 
drive the blended technique.  For comparison, the 
blended technique performance is also compared 
against that of a simple merge of all 6 (3 SSMI, TMI, 
and 2 AMSU-B) satellite-derived instantaneous 
rainrates (averaged over one day and one month).  
We also will perform a test of the sensitivity of the 
blended technique to situations where one or more 
satellites are omitted from the LEO constellation used 
to drive the blending procedure.After each day�s 0 
UTC 24-hour daily precipitation accumulations from 

the blended technique were completed, these blended 
technique datasets as well as the associated merged 
SSMI+TMI+AMSUB datasets were transferred to the 
BOM for an automated comparison with the rainfall 
analysis system.  The blended technique rainfall 
datasets were reduced from their 0.1-degree 
processed resolution to the 0.25-degree resolution of 
the rainfall analysis system.  The top two panels of 
Figure 8 are daily time series plots of the observed 
rain rate (�OBS�, solid line), the blended technique 
estimate (�GEO�, long dash), and the merged 
estimate (�SSMI+TMI+AMSUB�, short dash), where 
the satellite-derived averages were formed with 
points at all rainfall-reporting stations. A 25S latitude 
was used to separate tropical and mid-latitude rainfall 
regimes.  To better depict the day-to-day fluctuations, 
we have only plotted data from three months 
beginning in January 2002.  This summer period 
corresponds to the wet season in the tropical Northern 
Territories (averaging near 400 mm in January in 
Darwin) and the driest period in Western Australia 
(averaging about 10 mm in January in Perth).   
 
The bottom two panels of Figure 8 depict the 
associated rain area results.  In the tropical regime, 
both satellite estimates were biased low, in accord 
with the Korean Peninsula verification in Section 3.  
The blended technique was the best performer, 
especially for the heaviest rain events in mid-January 
and February.  In the drier mid-latitude regime, the 
blended technique tracked the observed values better, 
but with no clear bias one way or the other.  For the 
dry days in late March, neither estimate had very 
good performance.  Similar characteristics were noted 
in the rain area results.  Overall, for this period the 
blended technique performed best in the tropical 
regime and for the heaviest rain days in both regimes.  
In the mid-latitudes, the blended technique appeared 
to do well for the heavy rain days, with no clear 
winner in the light rain days.  Overall, the rain area 
was underestimated by all satellite techniques.  The 
blended technique was biased high in several 
instances, which we will further comment on below. 
 
Figures 9a-9f depict the daily correlation, RMSE and 
mean difference over this same time period, for both 
tropical and mid-latitude regimes.   We first verify 
consistency with the results from the KMA raingauge 
analysis of the previous section at the 24-hour and 
0.25-degree time and space scale combination.  From 
Figure 6b, at these scales the correlation and RMSE 
are approximately 0.55 and 1 mm hr-1, respectively.  
In comparison, the BOM analysis shows a wide 
fluctuation in these same daily values, depending 
upon the number of reporting gauges and the average 
observed rain rate, but for the heavy tropical rain (as 
a first approximation an analogy to the summer 
monsoon season in Korea) the values are in fairly 
good agreement (RMSE is in units of mm day-1).  The 
mean difference is deceiving unless one looks at the



 

 
Figure 8.  (A) Estimated daily average rain rate from the blended technique (GEO), and merged 
SSMI+TMI+AMSU-B estimates plotted against the Australian rainfall analysis system (OBS) from 1 January to 
1 April 2002, over the tropical regime (north of 25S latitude).  (B) Same as (A) but for mid-latitudes (south of 
25S latitude).  (C) Same as (A) except the daily rain area is plotted for the tropical regime.  (D) Same as (C) 
except the mid-latitude region is plotted. 
 
 

 
 
 
 

 
 
 
 



 
 
 

 
 

 
 
 

Figure 9.  (A) Daily correlation coefficient of the blended technique (GEO), and merged SSMI+TMI+AMSU-B 
estimates versus the observed values from the Australian rainfall analysis system, from 1 January to 1 April, 
2002 over the tropical regime north of 25S latitude.  (B) Same as (A) except for the mid-latitude region is 
plotted.  (C) and (D) are the same as (A) and (B), except that the daily root mean square error (RMSE) is 
plotted.  (E) and (F) are the same as (A) and (B) except that the daily mean difference is plotted. 
 



average observed rain alongside it.  For example, the 
blended technique exhibits near zero mean difference 
in the tropics in March (an unusually dry month), but 
several extreme positive and negative spikes in the 
wetter January and February, respectively.  In the 
mid-latitudes, the situation is similar, but less 
extreme. 
 
As noted in the South Korea analysis, the 
performance of this type of blended technique is time 
sensitive, determined to a some extent by the 
accuracy of the instantaneous PMW retrieved rainrate 
itself, and the age of the most recent LEO overpass.  
Over the latitude range of Australia, the worst-case 
revisit of the six-satellite LEO constellation is quite 
good (between 5-6 hours), and 2-3 hours on average.  
The Version-5 of the GPROF algorithm used in the 
TMI 2A12 over-land rainrate algorithm draws upon a 
cloud-radiation database that is dominated in number 
(thousands) by over-ocean cloud profiles, and a much 
small number (less than 50) of over-land cloud 
profiles.  Consequently, the over-land TMI-derived 
rainrate histogram will show �spikes� when the 
retrieval algorithm hits upon the same profile 
repeatedly.   Although it is difficult to tie together 
cause and effect when trying to tie this or related 
behavior to the observed trends in the blended 
technique�s mean bias, the most likely explanation 
may have to do with both the amount and frequency 
of extreme heavy rain events that are captured by the 
LEO constellation overpasses, and the quality of the 
PMW estimate itself.   
 
Next, the comparison between the Australian 
raingauge analysis system and the blended technique 
is performed at the monthly time scale.  The purpose 
of this is not to examine the capability of the blended 
technique as a monthly scale, climatological 
estimator of global precipitation (there are other more 
thoroughly examined techniques specifically for this 
purpose), but to average away the day-to-day 
fluctuations in the statistics shown in Figures 8 and 9, 
and examine any persistent trends blended technique 
as manifested in the skill scores or validation 
statistics.  To ease comparison, Figures 10 and 11 are 
identical to Figures 8 and 9, except that the abscissa 
now contains only 15 points, each representing the 
overall monthly value between 1 April 2001 and 1 
July 2002, and we show three estimates, the blended 
technique (�GEO�), the merged 6-satellite 
(�SSMI+TMI+AMSUB�), and the merged 3-satellite 
SSMI-only (�SSMI�). 
 
From Figure 10, both the blended technique and the 
SSMI+TMI+AMSUB both display similar values of 
continental-averaged rainrate over the entire 15-
month period.  The bias is near zero for all cases 
except during the wettest months where all 
techniques are biased high. In the mid-latitudes, 

neither technique performed especially well, but it is 
clear that the addition of the AMSU-B and TMI data 
greatly improve the statistics of a simple satellite 
merged technique (comparing SSMI and 
SSMI+TMI+AMSUB performance).   The estimated 
rain area is well captured by either the blended 
technique or the SSMI+TMI+AMSUB in the tropics.  
In the mid-latitudes, the rain area is underestimated in 
the dry summer months by all techniques, but the 
blended technique has the best performance of all 
three. 
 
In Figure 11, the monthly statistics clearly depict the 
behavior of the blended technique.  The performance 
falls off in the driest winter months June-September 
for both tropical and mid-latitude regimes as 
indicated by the correlation.  In the tropics, the 
RMSE increases during the summer months as 
rainfall amounts increase.  In the wettest tropical 
month of February, the mean difference becomes 
slightly negative, which concurs with the KMA 
raingauge analysis trends noted in the previous 
section.  The performance of the blended technique 
clearly falls off in the mid-latitude regime, where IR-
based rainfall techniques are known to have their 
greatest shortcoming (Ebert and Manton, 1998). 
 
5. IMPACT OF THE AMSU-B RAINFALL 
OBSERVATIONS. 
 
In the previous section, it was shown that by simply 
adding the AMSU-B and TMI rainrate estimates to a 
simple merged-sensor technique improved the overall 
monthly validation statistics, presumably due to the 
more frequent time sampling of the diurnal 
precipitation process captured by the TMI orbit and 
the morning and afternoon NOAA-15 and NOAA-16 
orbits.  However, in order to determine the impact of 
adding the non-rain radiometers such as the AMSU-B 
into the blended technique, we have to investigate the 
monthly performance of various parallel versions of 
the blended technique, where each version employs a 
different underlying LEO constellation.   Specifically, 
the March 2002 observed validation data were 
compared against four versions of the blended 
technique, each employing LEO constellations 
denoted by A (TMI only), C (3 SSMI only), D (3 
SSMI+TMI) and E (3 SSMI+TMI+2 AMSUB).  
Table 1 summarizes the March 2002 analysis 
validation results.  Initially, we expected the 
performance of the blended technique version using 
the (six satellite) LEO constellation E to be superior 
to the version using the (four satellite) constellation 
D, since the NOAA-16 satellite (with an AMSU-B) 
partially fills the early afternoon local time sampling 
gap.   However, during this month, there was no clear 
winner, the four-satellite version even slightly 
outperformed the six-satellite version in average rain



 
Figure 10.  Same as Figure 8, except that the monthly average values from 1 April 2001 to 1 July 
2002 are plotted, as well as the merged SSMI-only estimates 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 

Figure 11.  Same as Figure 9, except that the monthly average values from 1 April 2001 to 1 July 2002 are 
plotted, as well as the merged SSMI-only estimates. 
 



 
Constellation 
Used in Blend 

Avg 
Rain 

Rain 
Area RMSE Mean 

Diff CC HSS Bias 
Score POD FAR 

A (1 sat) 2.18 2114 2.08 0.35 0.59 0.35 0.94 0.83 0.11 

C (3 sats) 1.02 1263 1.49 -0.84 0.67 0.27 0.56 0.54 0.03 

D (4 sats) 1.77 1875 1.51 -0.11 0.63 0.37 0.83 0.76 0.08 

E (6 sats) 1.84 1965 1.82 -0.01 0.51 0.31 0.87 0.77 0.11 

Observed 1.60 2261        

  
Table 1.  Overall March 2002 statistics for the tropical (above 25S latitude) Australian rainfall validation, as a 
function of the constellation configuration used to update the blended technique.  CC= correlation coefficient, 
RMSE= root mean square error, HSS= Heidke skill score, POD= probability of detection, FAR= false alarm 
ratio.  Average rain, RMSE, and mean difference units are mm day-1, and rain area is given in units of (km2 x 
1000). 
 
 
rate and correlation.  Similar inconclusive results 
were noted during April and May 2002. 
 
In an attempt to explain this finding, we took 
advantage of the fact that the inclined tropical orbit of 
the TRMM satellite positions the along-track tracks 
so as to enable frequent time- and space-intersections 
with the sun-synchronous, near-polar orbits of the 
DMSP and NOAA satellites, and therefore TRMM 
could be used as a �reference� to examine if there 
was any systematic bias between the SSMI and 
AMSU-B rainrate estimates (relative to the TMI 
2A12 estimates).  All orbits of data between 
November 2001 and January 2002 were processed, 
and very-fine time and space coincident TMI-SSMI 
and TMI-AMSUB pixel pairs were extracted using a 
maximum allowed time and space offset of 1-minute 
and 10-km, respectively.  These data were further 
separated into over-ocean and over-land pixels 
(coastal pixels were discarded), and no-rain and rain 
pixels depending upon the TMI 2A12 algorithm rain 
flag.  In order to account somewhat for varying 
spatial resolution of the different instruments, the 
TMI data were averaged over a 3x3 box in the SSMI 
case, and between a 3x3 and a 5x5 box in the case of 
the AMSU-B, depending upon the AMSU-B across-
track scan position.  The two left-hand panels of 
Figure 12a depict (for the rain flagged pixels only) 
the scatter plot of the over-ocean SSMI vs. TMI, and 
over-ocean AMSUB vs. TMI.  Figure 12b is the same 
plot, for the over-land pixels.  The wide scatter in the 
data is evidence of, among other things, variations in 
the instantaneous PMW rainfall algorithms even 
when they are pointing to the same on-Earth location, 
instrument beamwidth differences, and from 
differences arising from different azimuthal viewing 
directions of the same cloud. 
 

In order to eliminate some of the scatter, these middle 
column depicts the case where the pixel collocation 
time is expanded to 15 minutes and the spatial offset 
was maintained at 10-km, after which the coincident 
data are further bin-averaged to 1-degree (the larger 
collocation time allows more pixels, and the bin-
averaging removes some of the azimuthal viewing 
angle differences).  The right hand column depicts the 
same situation for a 1-hour collocation offset and a 
bin averaging of 2.5-degrees.   In the last two 
columns, a positive bias of the over-ocean AMSU-B 
rainrate relative to TMI becomes evident, and a slight 
negative bias of the over-ocean SSMI rainrate relative 
to the TMI for rain rates < 2 mm hr-1.   
 
In the over-land situations, the same bin averaging 
reduced less of the scatter between the PMW 
algorithms, and it is difficult to identify any 
significant biases, although the variance between the 
TMI, AMSUB, and SSMI PMW algorithms is much 
larger.  The over-land PMW algorithms these sensors 
are largely influenced by the 85 GHz scattering-based 
channels (89 GHz for the AMSU-B), where the 
variability in ice optical thickness for a given 
underlying rainfall rate gives rise to a wider 
variability in the 37 and 85 GHz TB (Vivekanandan 
et. al, 1991).  In Section 2, we explained that the 
blended PMW-IR procedure uses a maximum time 
offset ∆t=15 minutes and maximum spatial offset 
∆d=10 km in the PMW-IR coincident data alignment 
procedure, and a box size of 2-degrees for the 
individual histograms.  For each 0.1-degree IR pixel, 
the closest 2-degree box and the eight surrounding 
boxes are located, and an inverse-distance weighted 
average is computed from the nine lookup table-
derived rain rates in order to minimize rainrate 
discontinuities across box boundaries.  Therefore, the 
rainrate estimates produced by the blended technique



 

 
 
 
Figure 12a.  Scatter plots of the SSMI-derived rainrate and the AMSU-B-derived rainrate vs. the TMI 2A12-
derived rainrate for all pixels when the TRMM orbit intersected the DMSP and NOAA orbits, for three months 
between November 2001 and February 2002.  All instantaneous SSMI-TMI and AMSUB-TMI pixel pairs are 
initially collocated to within 10-km in space, and further within 1-minute, 15-minutes, and 1-hour in observation 
time.  The data are then further binned into 1-degree and 2.5-degree boxes.  First row:  SSMI vs. TMI rain rates 
for a 1-minute offset and no additional spatial averaging, 15-minutes offset and 1-degree spatial averaging, and 
1-hour offset and 2.5-degree spatial averaging.   All pixels are for over-ocean.   Second row:  Same as first row 
but with AMSU-B replacing the SSMI. 

 

 
 
Figure 12b.  Same as Figure 12a, except for over-land pixels only. 



 
 
for land pixels within approximately 4-degrees 
latitude or longitude of the Australian coastline will 
be affected by both the over-land and over-ocean 
PMW inter-sensor bias effects (the inverse-distance 
weighting reduces the effect as one moves farther 
from a coastline).  Far enough inland, only the over-
land PMW inter-sensor bias affects affect the land 
pixels.  But since a large percentage of the tropical 
and mid-latitude Australian continental rain falls 
within 4-degrees latitude or longitude of a coast, the 
addition of the AMSU-B data to the blend therefore 
adjusts the blended technique with a larger rainrate 
(relative to TMI) than if an SSMI overpass had 
occurred at the same time.  Referring to the 15-
minute/1-degree bias plots in Figure 12a (closest to 
the above-mentioned scales of the blended PMW-IR 
procedure), this might explain the slightly larger 
average rain and rain area noted in Table 1 for the 
constellation E (with the AMSU-B instruments) than 
for the constellation D case (without the AMSU-B 
sensors).  However, there could be other factors at 
work and so we can only postulate this.  One way to 
account for the presence of inter-sensor biases in the 
blended technique is to declare that the TMI rain rates 
will be the PMW rainrate �reference�, and to adjust 
the SSMI and AMSU-B rain rates accordingly, so 
that the rain rates derived from each member of the 
underlying LEO constellation are consistent.  
 
Lastly, we note that the above information gathered 
by the space and time-intersecting LEO satellite 
overpass analysis is very similar to the situation faced 
by the proposed Global Precipitation Measurement 
(GPM) mission.  It is envisioned that GPM will 
include various blended and merged precipitation 
estimates at telescoping space/time scales (e.g., 0.1-
degree/3-hour up to 5-degree/1-month), produced by 
a LEO constellation containing different types of 
PMW sensors and their various instantaneous rainrate 
algorithms.   To do so require a reference satellite 
(the GPM core) and a means to transfer the 
information gathered from intersection of the GPM 
core with the other constellation members.  The 
transfer should be done across various space-time 
boundaries so as to best produce a final global rainfall 
rate product consistent between all constellation 
members. 
 
6. CONCLUSIONS 

We have presented a series of over-land validation 
statistics from comparisons between satellite-derived 
rainfall estimates from a blended IR-PMW 
precipitation technique and ground-based rainfall 
observations gathered from operationally maintained 
raingauge networks in Korea and the Australian 
continent.  The bias, RMS error, and correlation 
coefficient were computed at various space and time 

scale combinations owing to the gauge density and 
the 1-minute sampling capabilities of the Korean 
AWS network.  While precise gauge-satellite 
comparisons are by nature not truly possible, the 
gauge density and the 1-minute sampling capabilities 
of the Korean AWS network does reduce (but not 
eliminate) fundamental spatial and temporal offsets 
between observations and estimates, and provides a 
basis for gathering error statistics at sub-daily time 
scales and sub-one-degree spatial scales.  Finer than 
approximately 1-day and one-degree time and space 
scales, respectively, a rapid decay of the error 
statistics was obtained by trading off either spatial or 
time resolution.  Beyond a daily time scale, the 
blended estimates were unbiased and with an RMS 
error of no worse than 1 mm day-1.  Analysis of one 
years (April 2001-April 2002) worth of daily 
comparisons (24-hour totals) between the BOM 
continental Australian raingauge analysis system and 
the blended technique demonstrated the performance 
of the blended technique at both tropical and mid-
latitude regimes, summer and winter seasons, and 
surface regions ranging from desert to steep terrain 
responsible for orographically enhanced precipitation.  
The blended technique performed very well in the 
tropical regime above 25S latitude and for the heavy 
rainfall; over the mid-latitudes, the performance 
suffered for both summer and winter seasons and 
regions of steep terrain. 
 
A blended IR-PMW satellite-based precipitation 
technique is (by the nature of the ever-expanding 
suite of LEO PMW sensors and multispectral 
geostationary imagers) a constantly evolving type of 
technique.  As described in this article, its current 
implementation is admittedly crude in several 
respects, namely the use of a single common 11-um 
IR thermal channel, and no separation of stratiform 
and convective rain situations.  Next-generation 
geostationary imagers such as SEVIRI (Schmetz et. 
al, 2002) are becoming increasingly sophisticated and 
their expanded spectral and time-update capabilities 
have yet to be fully exploited for cloud microphysical 
and phase information.  In the current blending 
technique described in Section 2, a statistical 
histogram matching procedure is used to tie together 
the PMW and IR observations from LEO and 
geostationary sensors.  Originally, this type of 
technique was developed for radar rainfall 
applications over a sufficiently wide area and a time 
interval sufficient to capture many individual rain 
events.  Its utility when it is extrapolated down to the 
short time/space scales attempted here has yet to be 
fully examined, and other means to blend the 
information together need be examined and tested. 
 
The proposed international Global Precipitation 
Mission (GPM) is a constellation mission consisting 



of a primary, non-sun-synchronous orbiting reference 
satellite with a PWM radiometer (GMI) and dual-
frequency radar (DPR), and a constellation of various 
LEO satellites from U.S. government and 
international agencies (Fleming, 2002).  One 
objective of GPM is to provide enough sampling to 
reduce the uncertainty in short-term rainfall 
accumulations.  Moreover, the ground validation 
phase of GPM is being designed to include a means 
to produce bias and uncertainty factors that are a 
function of space, time and rainrate, as well as local-
domain space-time rain error covariance structures as 
a function of space and time (Bidwell et. al, 2002).   
For many applications, the rainfall products to be 
produced by the GPM constellation may be sufficient 
by themselves, but other applications may still require 
blended satellite techniques to provide data over 
regions of the Earth that are left uncovered by the 
GPM constellation orbit pattern.  
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