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Abstract

In this paper, we describe the use of statistically derived
hierarchical clusters of weather data to derive movement
estimates from pairs of frames in a time sequence. We
show that the use of hierarchical clusters enables small
cells to be tracked over short periods of time while us-
ing the movement of the larger scale features they are
embedded in for longer periods.

The motion estimator has been applied both to reflec-
tivity data obtained from the National Weather Service
Radar (WSR-88D) and to cloud-top infrared tempera-
tures obtained from the GOES-11 satellite. We demon-
strate the results on both these sensors.

1. Short-term forecast methods

The operational way of identifying storms from radar im-
ages involves the use of multiple thresholds and counting
runs of values above a threshold along a radial. The cen-
troids are then used as proxy for the storms (Johnson
et al. 1998) and tracked either on the basis of proximity
to expected position or through a a linear programming
approach (Dixon 1994). Change in position is extrapo-
lated.

A second technique is to use rectangular sub-grids
and find the maximum correlation within a search ra-
dius (Rinehart and Garvey 1978; Tuttle and Gall 1999).
A modification of this technique is to pre-filter the data so
as to track only the larger scales (Wolfson et al. 1999;
Lakshmanan 2000). It is also possible to use sub-grids
ranging in size from that of the entire image to small
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16km x 16km grids and to compute motion estimates at
each of these scales. Smoothness criteria can be used
to constrain these estimates at different scales.

Identifying, matching and extrapolating storm core lo-
cations is suitable for small scale storms. The large scale
features and cross-correlation technique is suitable for
longer forecasts, but with loss of detailed motion esti-
mates. An assumption here is that the storms are of the
scale of the sub-grid, not larger. The multiscale estima-
tion is suitable also for large scale forecasts, but with less
precise detailed motion estimates.

When used for advection, all the correlation tech-
niques rely on reverse projection, so there needs to be
wind speed at the spot where the storm is moving to.
The image template methods also assume that all pixels
within a grid are moving together.

We use a hybrid approach where motion estimates
are made for groups of storms (rather than for sub-grids
of the image), but at various scales. The motion esti-
mate for a storm cell is the movement that minimizes the
mean-absolute-error between the current frame and cor-
responding pixels in the previous frame, except that the
template is not a sub-grid of the image, but is instead the
actual shape of the storm cell.

Instead of simply matching storm cells across frames,
motion estimates are made by finding the best match for
the storm-template. Thus, the major steps in the tech-
nique are:

1. Find storms at different scales.
2. Estimate motion at the various scales.

3. Forecast for different periods using motion at differ-
ent scales.



2. ldentifying storms

A K-Means clustering technique from Lakshmanan
(2001); Lakshmanan et al. (2002) is used to identify
components in vector fields. The technique provides
nested partitions, i.e. the identified storms structures are
strictly hierarchical. The technique works by clustering
image values (reflectivity/infrared temperature, etc.) in
the neighborhood of a pixel on two opposing criteria:

e Belong to same cluster as your neighbors.

e Belong to cluster whose mean is closest to your
value.

Hierarchical segmentation is incorporated into the K-
Means clustering technique by steadily relaxing inter-
cluster distances.

K of this K-Means clustering is not the number of re-
gions in the final segmented output. It is the number of
central vectors about which we do the clustering. The
number of regions is determined by the spatial location.
As the number K increases, the clusters cover a smaller
range in the texture space. In case the number of re-
gions is not known a priori, a very high value of K may
be chosen. The most detailed segmentation may have
too many regions, but coarser levels might yield the de-
sired result. This is one advantage of using a hierarchical
technique.

We iteratively move pixels minimizing
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where the distance in the measurement space is:
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A region growing algorithm is employed to build a set
of connected regions, where each region consists of 8-
connected pixels that belong to the same K-Means clus-
ter. If a connected region is too small, then its cluster
mean (the mean of the texture vectors at each pixel in
the region) is compared to the cluster means of the ad-
joining regions and the small region is merged with the

closest mean. The result of the K-Means segmentation,
region growing and region merge steps is the most de-
tailed segmentation of the image.

The inter-cluster distances of all adjacent clusters (or
regions) in the image are computed. A threshold is set
such that half the pairs fall below this threshold. If a pair
of clusters differs by less than this threshold, the clusters
are merged and cluster means updated. This process
is continued until no two adjacent regions are closer in
cluster space than the threshold. When this process is
complete, we have the next coarser scale of the seg-
mentation. This process is repeated until no changes
happen.

3. Motion Estimation

Once the storms have been identified from the images,
these storms are used as a template and the movement
that minimizes the absolute-error between two frames
is computed. For radar images, we used consecutive
(5 min) volume scans. For satellite imagery, we used
frames 400 seconds apart.

Motion estimation is done by moving a template of the
identified cluster at the appropriate scale around in the
previous image. A matrix of mean absolute error at the
different positions is obtained as shown in Figure 1

The field is minimized by weighting each pixel by how
much it differs from the absolute minimum and finding
the centroid.

For each storm template, we also get a growth/decay
estimate. This is based on how much the average value
inside the template changes based on the template at
the best match.

4. Short-term Forecast

The forecast of the fields is done based on the motion es-
timates, growth and decay heuristic and the current data.
Forecasts can be made on fields other than the tracked
field. For example, motion estimates can be derived from
VIL and applied to radar reflectivity and probability fields
of lightning and hail.

The forecast is done in three steps:



Figure 1: Matrix of mean absolute error by position.
Larger errors are “hotter”. Two different locations are
shown.

1. Forward: project data forward in time to a spatial
location given by the motion estimate at their current
location and the elapsed time.

2. Define a background (global) motion estimate given
by the mean storm motion.

3. Reverse: obtain data at a spatial point in the future
based on the current wind direction at that spot and
current spatial distribution of data.

The skill of this technique is quantititavely measured
by comparing, for example, the 30 minute forecast
against the actual field closest to 30 minutes ahead. Re-
sults over a 750 minute period on reflectivity from the
Fort Worth radar on April 1, 1995 are shown in Figures 2
and 3.

The CSI seems to indicate the technique performs a
lot better than persistence. The MAE, especially in the
longer-range forecasts, doesn’'t show much difference
between the two. The reason is that the MAE takes into
account actual reflectivity values. We are good at pre-
dicting storm location, but not so good at growth/decay.

A forecast based on satellite infrared temperature is
shown in Figure 4.
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Figure 2: Skill (red) at forecasting a radar reflectivity field
compared to a persistence forecast (green). (a) Values
30dBZ and above for 15 minutes (b) Values 30dBZ and
above for 30 minutes (c) Values 30dBZ and above for 60
minutes (d) Mean absolute error in 60 minute forecast



Figure 3: The original (left) and a 15 minute forecast on
KFWS reflectivity data from April 1995.

Figure 4: The original (left) and a 30 minute forecast of
infrared temperature from Oct. 1999.

Further work is needed in these areas:

1. High bias — associated with splatting during forward
projection.

2. Poor forecast of actual data values (high MAE), i.e.
poor growth/decay estimate.

3. A better choice of scale for making forecasts.
4. Assimilation of mesoscale model wind speeds.
5. Use of Doppler radar velocity estimates.

6. Images look unrealistic beyond 60 minutes.
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