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1. INTRODUCTION 
     Since GOES NEXT (series 8 through 11) became 
operational, there has been significant efforts to 
maximize   information in the GOES platform, 
including both measured radiances as well as derived 
products from the measurements.  For example, 
cloud-top pressure derived from GOES sounder data 
has been used in operational 20km Rapid Update 
Cycle (RUC) at National Center for Environmental 
Prediction (NCEP) since April 2002 (Kim and 
Benjamin, 2001). Also, cloud track winds derived 
from GOES imager data has significantly 
contributed to forecast improvement (Velden et al. 
1997).  

     Data from each instrument have relative merit. 
Imager data have better coverage and higher spatial 
resolution (4 km) than sounder data (10km). Sounder 
data have better  measurement accuracy and 19 
channels data make it possible to retrieve vertical 
temperature and humidity profiles.  Figure 1 is cloud 
product obtained from NESDIS, showing cloud-top 
temperatures, effective cloud amount (between 0 for 
clear and 100 for overcast), and cloud-top pressure at 
each field-of-view (FOV) collected around a location 
at latitude of 36.61oN and longitude of 97.49oW  
(ARM/CART site, marked with *).  Figure 2 shows 
brightness temperatures of both GOES imager 
window channels at the same location and almost the 
same time (21 minutes apart) collected from the 
local GVAR station at NOAA Forecast Systems 
Laboratory. Comparing the two figures, notice that 
imager data provide better cloud boundaries.  
Therefore, vertical distribution of clouds (not the 
effective cloud amount) within the sample domain is 
better defined. Also, Kim (1998) has shown that 
sample means of imager data and sounder data are 
statistically equivalent when there are clouds.  

     We describe the adaptive clustering approach 
(Kim, 1996) applied to GOES imager data to extract 
cloud-top distributions in section 2. Minimization 
formula to combine sounder and imager radiances is 
given in section 3 with preliminary results. 

2. PREPROCESSING OF IMAGER DATA 

     Let ( )nf x  be the fractional probability density 
function of random variable x  defined on non       
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coverage. In this application, the random variable 
is the brightness temperature, the density function 
is the histogram of relative frequency and the 
domain spans within feasible limits, namely, 
between minimum and maximum brightness 
temperatures. The steps of adaptive clustering are; 

Ω

1)   Conversion of spatial data into relative 
frequency (density) histogram, 

2)   Applying kernel function until subsets are 
available,  

3)   Obtain number of subsets, their fractional 
value, and their corresponding representative 
radiance value, 

4)   Derive cloud-top height from the 
representative radiance values by using 
forward model. 

Figure 3 shows an example of adaptive clustering 
applied to imager channel 4 data in Fig.2a.  
Imager pixel data are converted to relative 
frequency (density) within feasible domain 
bounded by 240 deg K to 280 deg K. The density 
function is smoothed enough to clearly identify 
distinctive sub-domains. Currently, we apply 
smoother until maximum five subsets are 
identified.  If no clear subsets are identified, then 
we consider total sample mean as representative 
value. All the steps are done automatically. 

 
Fig.3 Example of adaptive clustering applied to imager 
Band 4 data in Fig.2a. a) The density histogram overlain 
with smoothed PDF.  (b) Three PDFs determined by 
clustering. In this example, three groups are defined with 
representative brightness temperatures of 248.4, 261.2 and 
271.8 deg K and with corresponding cloud fractional 
coverage of 0.36, 0.51 and 0.13. 

Figure 4 is an example of adaptive clustering results 
using GOES channel 4 brightness temperatures for 
five days from 10 to 15 April 2002. The horizontal tic 
mark indicates representative cloud-top temperature, 
and the vertical bar stands for range of cloud-top 
temperature. Thus, more than one horizontal tic 
marks connected by vertical bar stand for multilevel 
cloud structure. Of course, fractional coverage for 

each horizontal tic marks are not plotted. This hourly 
time-series show clear cases (warm and single level, 
day 100 of the year), overcast case (cold and single 
level, 1200 UTC to 2000 UTC in day 103 of the 
year), and many multilevel structures in other times 
as indicated by vertical bar. Such multilevel structure, 
which is derived from fractional cloud information is 
added value to refine cloud assimilation (Kim and 
Benjamin, 2001) which picks a median value to 
represent a grid point value. 
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Fig.4  Five day time-series of hourly imager channel 4 
brightness temperature data adaptively clustered to depict 
sub set. The vertical bar explains the range of cloud-tops 
and small horizontal tic marks stand for each 
representative  cloud-top temperature. The small horizontal 
tic marks in warm temperature is clear case (day 100) and 
single bar in cold temperature is overcast case (day 103) 
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3.  FORMULATION TO MERGE IMAGER 

AND SOUNDER DATA 
     We formulate a minimization procedure in which 
sounder radiance data are treated as observation, 
while cloud fraction and brightness temperatures 
from imager are used as a weak constraint. The 
formulation follows Kim (1996) except application 
is to GOES sounder and imager data.  The linear 
regression formulation is, 

,y X β ε= +  

where  is error,  is a vector whose elements are 
difference of computed clear radiances from 
measured radiance for selected sounder channels 
(currently we use sounder channels 7, 8 sensitive to 
the cloud). The design matrix, 

ε y

X  has two column 
vectors whose elements correspond to difference of 
computed clear radiances from computed overcast 
radiances, and β is a column vector of vertically 
distributed cloud fraction whose error covariance is 
modeled as inverse of the   multilevel cloud fraction 



matrix obtained from imager data. The imposition of 
constraint to the minimization of differences of 
computed and measured will give rise to constrained 
minimization, whose functional is defined by 

J y X β= − 2  + λ β t β . 

The solution to the functional is the constrained least 
squares estimator, which is vertically distributed 
cloud fraction, not the vertical distribution of 
effective cloud amount. The parameter λ  can be 
obtained by generalized cross validation method 
(Wahba 1990), but for the reason of efficiency we 
use pre-determined value. 

 

4. RESULTS OF AN EXPERIMENT 
     The experiment is carried with samples of GOES 
sounder and imager data collected from FSL's 
GVAR station. The verification of the result is made 
by comparing measured radiances with computed 
radiances with  multilevel cloud assumption during 
the month of April 2002. We select the cases of 
multilevel clouds and compared the measured 
brightness temperatures (sample mean of sounder 
data from GVAR station) and computed brightness 
temperatures using estimated cloud fraction as 
described in previous section. Figure 5 is the scatter 
plots for channel 7 and 8, whose correlation 
coefficients are 0.81. There appeared to have some 
outliers which are under investigation. 
 

Fig.5 Scatter plots of measured brightness temperatures 
(sample mean of sounder data) and computed brightness 
temperatures using fractional clouds for a) Band 7, b) 
Band 8.   

 

5.  SUMMARY 
     Our experiment is designed to incorporate 
fractional cloud coverage obtained from the high 
spatial resolution imager data with sounder data. It is 
an extension of earlier experiment with simulated data 
to real data, which are prone to many errors. The 
mismatch of temporal sampling, i.e., 21 min 
difference can contribute outlier in Fig.5 due to high 
variability of clouds.  Therefore, we plan to establish 
re-sampling of imager data to reduce representative 
errors.  
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