
1. INTRODUCTION
Detecting actual changes in the amount or frequency

of precipitation received at a United States cooperative
observer network (COOP) station requires eliminating
apparent "changes" that are the result of instrument drift,
alterations in method of measurement and/or reporting,
modification of the station's surroundings, etc. Change
point detection is very challenging even when the
measurements possess nice statistical properties such
as normality, continuity, and homogeneity of variance.
However, precipitation data do not possess nice
statistical properties. In fact, the occurrences of
precipitation can be relatively infrequent and when
precipitation does occur, the measurements tend to be
skewed. For these sorts of measurements, use of
standard change point methods is not recommended.

Fortunately, the COOP network is fairly dense. Each
station has several neighbors also measuring
precipitation. These neighbors are taken advantage of to
develop an alternative approach for detecting
inhomogeneities. In particular, the relationship between
frequency and amount of precipitation at each station is
compared to its neighbors for each month over the entire
period of record. Thus the empirical distribution and time
series of various measures of association between
stations are obtained. New measurements can be
compared to these to determine if the recent measures
are "typical" or not. If not, the station can be flagged as
possibly having experienced a change and further
checks can be performed.

Preliminary results of these comparisons for Iowa are
available in Tollerud et al. (2002). In this paper, the
comparisons are performed on simulated data to
determine the efficacy of the methods and the period of
time required to detect changes of various types and
magnitudes.

2. DATA
The data to be tested for inhomogeneity come from

the TD3200 dataset observed by the COOP network.
These data are available on CD-ROM from the National
Climatic Data Center (NCDC). These rain gauge
precipitation measurements are observed and recorded
daily, then submitted, entered, and quality checked
monthly.

Preliminary analyses of these data have been
completed, and are detailed in Tollerud et al. (2002),

hereafter T02. For the analysis in T02, the data from
COOP stations in Iowa were selected because of the
frequency of precipitation, dense coverage by the COOP
network, and uniformity of terrain in that state.

On a daily time scale, precipitation measurements
are highly variable. Thus, in T02 statistics based on daily
measurements were aggregated to give seasonal
statistics that are less variable.

In order to study the efficacy of the methods, we
apply them here to simulated data. Use of simulated data
facilitates variation of a single characteristic of the
measurements to determine how each characteristic
changes the statistics.

Precipitation observations were simulated in the
following way:

For probabilities p ε {0.5, 0.4, 0.3, 0.2, 0.1, 0.05,
0.01}, simulate a vector of Bernoulli trials (success or
failure). These proportions represent the probability of
precipitation over a season at a station. Thus, p=0.5
would represent a location with precipitation occurring
frequently, typically on about half of the 90 days of each
season. For p=0.01, precipitation is extremely rare. By
using this variety of probabilities, we can determine how
our ability to detect changes in precipitation depends on
the frequency of precipitation.

For each success (e.g. day with precipitation),
simulate a rainfall amount, T, as the sum of two gamma
distributed random variables, x1 and x2, for the
target station (e.g. T = x1 + x2).

For each of 10 neighboring stations, simulate a
rainfall amount, Ni, as the sum of one of the gamma
distributed random variables used to simulate the target
station rainfall, x1, and a different gamma distributed
random variable, (e.g. N1 = x1 + x3 ; N2 = x1 + x4, etc.)
(Brown, 1978).

In order to simulate some stations with no rain when
neighbors are reporting rain, randomly select some small
percentage of rainfall observations, in this case 5%, to
be reset to zero. Thus, target events are not always
concurrent with neighboring events, but there is good
agreement.

Desired correlation of the target with the neighbors is
achieved by setting the parameters of the gamma
distributions appropriately. For the simulated data, the
measurements at the neighboring stations were
computed such that the correlation between the
precipitation amount at the target station and each
neighboring station is 0.7. This is a fairly good
correlation, and was chosen to approximate the actual
correlation between pairs of stations in Iowa.
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For this paper, a single set of parameters was used
for the gamma distributions and percent of observations
failing to indicate rain when the neighboring stations
indicate rain. However, a variety of parameters will be
used in future work to determine if the measures work
well on different types of rainfall measurements.

The simulated data almost certainly fail to represent
some characteristics of real precipitation data. ("All
models are wrong, some models are useful"). However,
the simulated data can be thought of as an idealized
representation of the real data. If the methods fail to work
on the idealized, (i.e. less complex) simulated data, then
they are unlikely to work on the more complex real data.

3. METHODS
The precipitation measures taken at each neighbor

station are used as "truth", and then various scores are
computed based on the resulting pair. The scores
considered in T02 are the equitable threat score (ETS),
the frequency bias (BIF) and the magnitude bias (BIM).
The magnitude bias is ignored here, and will be analyzed
in future work. The ETS and frequency bias are
computed by comparing the binary measurements of
precipitation vs. no precipitation at the two stations.
Since these measures are only concerned with
precipitation "events" rather than amounts, the data used
to compute them are a series of Bernoulli trials, or a
binomial. For these measures, the gamma distributed
rainfall amounts (and therefore the associated
parameters and correlation) are irrelevant. The
agreement between events at the neighbors is relevant.
For the simulations used in this paper, this agreement is
very high.

(1)

(2)

ETS and BIF near 1 indicate good agreement
between the target station and its neighbors.

4. RESULTS
The results are presented here in time series graphs.

Time series for both ETS and BIF scores are presented

for the standard simulated data and several types of
"bad" data. For each of the sets of "bad" data, some
type of problem was constructed for the last of 33
seasons of precipitation observations. The effect of the
"bad" data on the scores, if any, is made clear by the
time series plots.

4.1 Standard Simulated Data
As shown in Figures 1 and 2, for typical station

behavior, the scores fluctuate randomly.When rainfall
events are more common, the scores for each 90 day
season are less variable. When rainfall is rare, the
scores sometimes exhibit erratic behavior. For the data
with a probability of precipitation of only 1%, much of the
time there is too little data to compute the scores. When
there is enough data so the scores can be computed, the
results can be extreme, as shown by the downward
spike in both BIF and ETS during the 26th season in the
graphs. For a probability of precipitation of 5%, the
scores can usually be computed, but there are many
spikes in the time series for this data as well. This high
variability may make it more difficult to detect real
differences when precipitation is relatively infrequent.

4.2 Shifted Data
For this analysis, two types of shifted data were

simulated. For the first set of data, the first observation of
the last season of data was deleted. By removing this
single observation, the remaining observations for that
season are "shifted" to the day before the corresponding
observations at the neighboring stations. For the second
set, the shifting occurred half way through the last
season (e.g. on the 45th day). Shifting of this nature is a
common occurrence among the COOP network
observers (Peterson et al., 1998).

The graphs showing the ETS and BIF computed on
the entire season of shifted data are presented in
Figures 3 and 4. The BIF graph looks the same as the
one for the standard data, as it should. BIF measures the
frequency of precipitation over a season compared to the
frequency at the neighboring stations. Shifting the data
can only change the seasonal frequency by a single day.
Thus, BIF does not give an indication that the data have
been shifted.

ETS, however, drops dramatically due to the shift, as
it should. When the precipitation at the target station is a
day early, then the target station measurement is not a
good "predictor" of precipitation at the neighboring
stations. This causes the score to be very low.

For the second set of data, only the graph of ETS is
shown (Figure 5), as the BIF should not change due to
shifting. The ETS still drops off for the last season,
though obviously not as dramatically as when the whole
season was shifted. Fortunately, it appears that the
change in ETS is large enough to be detected as
"unusual" for most of the values of p.
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Figure 1: Time series of BIF for standard simulated data.
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Figure 2: Time series of ETS for standard simulated data.



Season

E
T

S

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p=0.5
p=0.4
p=0.3
p=0.2

p=0.1
p=0.05
p=0.01

Figure 3: Time series of ETS for data with an entire season shifted.
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Figure 4: Time series of BIF for data with an entire season shifted.



4.3 Missing Data
For this analysis, 20 and 40 observations,

respectively, were randomly selected from the last
season's 90 observations and replaced with
observations of no precipitation. In some cases, the
observation selected may have already indicated no
precipitation so the replacement resulted in no change.
The resulting scores for the resulting data sets are
shown in Figures 6 through 9. For the data with 40 false
no precipitation observations, the BIF and ETS drop off
dramatically. Not surprisingly, the drop is less
pronounced for the data with only 20 false observations.
For p=0.1 and p=0.2, there is no drop in the scores.
Instead, they look fairly typical compared to scores for
other years. The scores for some of the probabilities of
precipitation do not appear to be unusual. Thus, the
change would likely go undetected by the scores in
these cases. When the probability of precipitation is low,
the scores for the "bad" season may not be detectable
as different from normal due to the high variability.

5. CONCLUSIONS AND FUTURE WORK
The ETS and BIF both show marked decreases

when both 20 and 40 observations were replaced with
observations of no precipitation. The ETS also
decreases noticeably when date shifting occurs for both
a whole season and a half season. The BIF does not
change much due to date shifting, as the frequency of
rainfall over the season is hardly changed. The drastic
changes are more difficult to detect relative to scores

from previous years for probabilities of precipitation of
1% and 5% due to the high variability of the statistics.

These analyses confirm that changes of various
types are indicated by changes in BIF and ETS when the
information from the neighboring stations agrees well
with the information at the target station. The changes
are easiest to detect with longer periods of record
following the change and when precipitation is frequent.
However, even changes followed by only a partial
season of measurements may be indicated by a change
in the scores.

These simulations assumed very good event
agreement between the target station and its neighbors.
Further research will include investigation of the scores
computed on simulated data with less agreement
between neighbors. It will likely be the case that less
correlation among neighbors will result in these scores
being less sensitive to inhomogeneities.

The ETS and BIF are not designed to detect changes
in the amount of precipitation when the frequency is
unchanged. Another measure, the magnitude bias, can
be used to detect these types of changes. This measure
is used in T02 on the Iowa data. Once more testing has
been completed on the simulated data, the properties of
this score will also be investigated.

All of the analyses in this paper and T02 focus on
analyzing the seasons separately. Attempts are being
made to homogenize the measurements from the
different seasons, so that precipitation totals from all
seasons may be considered together rather than
separately, thus yielding a larger sample size in the
same amount of time.
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Figure 5: Time series of ETS for data with half of the last season shifted.
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Figure 6: Time series of BIF for Data with 40 False Missing Observations.
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Figure 7: Time series of ETS for Data with 40 False Missing Observations.
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Figure 8: Time series of BIF for Data with 20 False Missing Observations.
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Figure 9: Time series of ETS for Data with 20 False Missing Observations.



ACKNOWLEDGEMENTS
This research was completed with funding from the

NCDC Health of the Network Project. NCAR is
sponsored by the National Science Foundation.

REFERENCES
Brown, B. G., 1978: Experimental Design in

Weather Modification: The Value of Stratification.
Charlottesville, University of Virginia, Department of
Environmental Sciences, M.S. Thesis, 158 pp.

Peterson, T.C., D.R. Easterling, T.R. Karl, P. Groisman,
N. Nicholls, N. Plummer, S. Torok, I. Auer, R. Boehm,
D. Gullett, L. Vincent, R. Heino, H. Tuomenvirta, O.
Mestre, T. Szemtimrey, J. Salinger, E. Forland, I.
Hanssen-Bauer, H. Alexandersson, P. Jones and D.
Parker, 1998: Homogeneity adjustments of in situ
atmospheric climate data: A review. International
Journal of Climatology, 18, 1493-1517.

Tollerud, E. I., B. G. Brown, and T. L. Fowler, 2002: Iden-
tifying Inhomogeneities in precipitation time series: 1.
Diagnostic measures of spatial correlation. 13th Con-
ference on Applied Climatology, Portland, OR, May
12-16.


	1. INTRODUCTION
	2. DATA
	3. METHODS
	4. RESULTS
	4.1 Standard Simulated Data
	4.2 Shifted Data
	4.3 Missing Data

	5. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

