
JP3.1  STATISTICAL METHODS FOR NOWCASTING THUNDERSTORM RAINFALL 
 

Neil I. Fox*, Christopher K. Wikle and Bill Xu 
University of Missouri – Columbia, Columbia, MO 

 
 
1.  INTRODUCTION 2. METHODOLOGY 

  
For many hydrological applications, especially flash 
flood warning and urban drainage management a good 
short period forecast of heavy rainfall is required. 
However, the deterministic nowcasting of thunderstorm 
motion and development has proved a difficult problem 
in meteorology due to the short spatial and temporal 
continuity of convective systems. For the effective 
hydrological use of intense precipitation nowcasts a 
deterministic method can be misleading. As all forecasts 
have an inherent error, any attempt to use a 
deterministic forecast of precipitation in a hydrological 
application, without reference to the range of outcomes 
and their impact on the hydrological situation, will 
inevitably result in poor hydrological forecasts. 
Methodologies that use simple extrapolation techniques 
(e.g. TITAN: Dixon and Weiner1993; SCIT: Johnson et 
al. 1993) cannot provide information that can be applied 
for such hydrological applications in a robust manner. 
These methods lack the ability to show development of 
systems and fail to provide a measure of error 
associated with the nowcast. Systems that attempt to 
model storm development (e.g. GANDOLF: Pierce et al. 
2000) have been demonstrated to be very sensitive to 
the data used to parametrise the convective model 
(Sleigh 2002) and, again, do not provide error 
characteristics. In this paper we demonstrate the use of 
a statistical method of nowcasting.  

Consider the stochastic integro-difference equation 
(IDE) for an underlying spatio-temporal process yt(s) 
which in general is assumed to be continuous in space 
and discrete in time: 
 

∫ ++ +=
~

11 )()();()( sdrryrksy ttsst ηθγ              (1) 

 
where s and r are spatial locations in the domain of 
interest, ks(r; θs) is a redistribution kernel that describes 
how the process at time t is redistributed in space at 
time t+1, µs are parameters of the redistribution kernel 
(that may be spatially varying), ˜´ is a spatially-colored 
noise process that is independent across time, and ° is 
a growth/stationarity parameter. Note that there is a 
substantial literature on deterministic integro-difference 
equations in the mathematical ecology literature related 
to the dispersal of ecological processes over time (e.g., 
Kot et. al 1996). Stochastic versions of the IDE model 
have been considered by Wikle and Cressie (1999), 
Brown et al. (2000), and Brown et al. (2001), and Wikle 
(2001, 2002). 
 
It is well-recognized in the ecology literature that the 
deterministic IDE framework can accommodate diffusive 
dynamics, and that the behavior of the dynamics is 
determined from the kernel specification (e.g., Kot et al. 
1996). Wikle (2001,2002) showed that the IDE 
representation is significantly more powerful in that it 
can model more complicated dynamical behavior, 
including the propagation of spatial features through 
time. For illustration, consider the one-dimensional 
Gaussian spatial kernel,  

 
The methodology presented herein utilizes an approach 
that efficiently parameterizes spatio-temporal dynamic 
models in a hierarchical framework. Furthermore, this 
approach can easily incorporate additional information 
to aid in the nowcast. Finally, we note that the approach 
accounts for the uncertainty in the prediction and 
provides relevant distributional information concerning 
the nowcast. Case studies are presented that show the 
effectiveness of the technique and its potential for 
hydrological use. 
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The authors present a new method based on Bayesian 
statistical methods that aims to produce a deterministic 
nowcast of convective storm location and intensity 
bracketed by knowledge of the probability of error. The 
methodology also deals on a pixel-by-pixel basis which 
allows for greater flexibility in forecasting structural 
changes in storms compared with cell or object oriented 
schemes. 

where the kernel is centered at θ1 + s and thus is shifted 
by θ1 spatial units relative to location s, and θ2 is the 
scale parameter. We refer to θ1 as the translation 
parameter and θ2 as the dilation parameter. In the IDE 
kernel context, these parameters influence the 
dynamical evolution of the y process. Specifically, the 
dilation parameter controls the diffusion, such that wider 
kernels imply greater diffusion. The translation 
parameter controls the propagation. If the kernel is 
shifted to the left (right) of the center, propagation is to 
the right (left). In the two-dimensional spatial setting, the 
Gaussian kernel is elliptical and controlled by two shift 
parameters, two dilation parameters, and an orientation 
parameter (corresponding to the mean, variances and 
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correlation parameters of a 2-dimensional normal 
distribution, respectively). Again, the diffusion properties 
are largely controlled by the dilation parameters, and the 
propagation is controlled by the shift parameters; the 
propagation is essentially in the opposite direction to the 
kernel shift, relative to location s. 
 
The IDE representation is even more powerful if one 
considers a spatially-varying kernel, in which the 
parameters are allowed to vary with space. Such 
spatially-varying (heterogeneous) kernels can capture 
more complicated dynamics than homogeneous kernels 
in that the speed and direction of propagation can vary 
throughout the spatial domain of interest. The difficulty 
with allowing the kernel parameters to vary with space is 
the large number of parameters that must be estimated. 
However, as discussed in Wikle (2002), we are able to 
proceed by utilizing an equivalent spectral 
representation of the stochastic IDE as well as modeling 
the parameters as spatial random fields in a hierarchical 
Bayesian framework. 
 
In the context of the radar nowcasting problem, the past 
radar images inform the kernel orientations for the 
current time, which in turn, controls the propagation of 
disturbances in the forecast. Specifically, the 
disturbance is propagated in a pixel-by-pixel fashion, in 
such a way that all of the pixels that make up a 
disturbance do not necessarily move in the same 
fashion - they may move into regions that have different 
kernel orientations than their neighbors. However, we 
note that the model inherently “blurs” or smooths the 
disturbances by the averaging nature of the kernel (e.g., 
Brown et al. 2000). In addition, this approach does not 
allow one to predict (i.e., generate) new disturbances 
that are not suggested by past data. Modifications to the 
methodology, in which other weather parameters are 
used to suggest new development, could be 
implemented in principle. 
 
The Bayesian method produces a full predictive  
distribution of forecasts in addition to the average 
forecast. Although it is not presented in this paper one 
can access the full realization of the nowcast or 
estimates of predictive error. 
 
3. CASE STUDY 
 
Studies have been made using data collected during the 
World Weather Research Programme Sydney 2000 
Forecast Demonstration Project (Fox et al. 2001, 
Keenan et al. 2002). Four cases were selected to 
examine; three of these involved convective storms and 
the fourth a frontal stratiform rainfall event. In this paper 
we present preliminary results from one of these cases, 
that of 3 November 2000. On this day several 
convective cells developed in the Sydney region. One of 
the cells developed into a supercell, spawning at least 
three tornados. The meteorology of this case has been 
examined by Sills et al (2002). The development and 
propagation of the convective cells on this day was 
particularly complex with a strong sea breeze front and 

a large number of boundaries generated by outflows 
from the various cells. 
 
Figure 2 shows a sample forecast. In this instance, 
radar data was available at 10 minute intervals and 
1.5km CAPPI data were used. Six scans were used to 
train the model, with the forecast run out to T+40, again 
at 10 minute steps. The model appears to capture the 
non-linear motion of the cell and retain some of the 
intensity features, although these are not accurately 
forecast.  
 
4. DISCUSSION 
 
The work presented here is at any early stage. The 
results presented show promise that the statistical 
method can capture cell motion and development. As 
mentioned above there is potential to incorporate other 
meteorological parameters into the model to constrain 
the motion and development of the systems. The 
authors intend to pursue this avenue starting with 
windfield data. This approach should allow a more 
realistic nowcast to be produced. We will also examine 
further cases and develop more efficient programs so 
that longer nowcast periods can be examined and the 
model run more quickly. 
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Figure 1. The top panel shows the estimated propagation orientation as suggested by the spatially-varying kernels 
shown in the bottom panel. These estimates are based on the 3 November 2000 storms in Sydney, shown in Figure 
2.  



 
 
Figure 2. Estimation and nowcast of storms in Sydney on 3 November, 2000. The left panel shows consecutive 10 
minute returns, with the right panel showing the model estimates for the first 6 time periods (i.e., the model training 
period) and forecasts out to 9:55 based on data through 9:15. 
 


