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1. Introduction

This paper describes a series of techniques to
improve the severe weather recognition process using the
National Weather Service’s Graphical Forecast Editor
(GFE). The GFE, developed by the NOAA Forecast
Systems Laboratory is the cornerstone of the Interactive
Forecast Preparation Systems (IFPS). It provides an
integrated system to access, analyze, and graphically edit
forecast model data. Scripting capability is built in to
enable data manipulations and calculations for deriving
gridded fields.

One of the more important and advantageous
features of the GFE is the development of “Smart Tools”
(Hansen, 2001).  Smart Tools empower forecasters with
a method to create scripts that integrate forecast
techniques specific to the local forecast area (LeFebvre,
2001).  A Smart Tool is a Python based computer
program that converts complex meteorological equations
and concepts into simplified grid data.

A detailed analysis of National Weather Service
Tampa Bay Area, Ruskin, Florida WSR-88D radar and
sounding data for severe weather events from1994
through 2000 provides many important correlations for
severe weather recognition. The severe weather events
were stratified by season, into hail, damaging wind,
tornado, and waterspout categories. The GFE scripting
capability is utilized to survey vertical model sounding data
with the results from the severe weather and sounding
correlations in an automated GFE environment. This
provides a daily briefing of likely severe weather scenarios
in areal graphic form. When thresholds are met, product
specific color curves highlight threat levels.  This GFE
methodology of automated severe weather recognition
has distinct time savings and enhanced viewing
perspective advantages over manual analysis on a single
sounding. The aforementioned radar analysis project also
correlates changes in radar data from volume scan to
volume scan to severe weather occurrence. With future
access to WSR-88D radar data in GFE, automated scripts
will check for temporal and spatial severe weather trends
in radar data.
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2. Prediction Strategies

Through the years, methodologies were developed to
help  to diagnose the atmosphere's potential to produce
severe convective weather. Miller (1972), related synoptic
scale features to severe weather outbreaks. Composite
charts identifying synoptic scale map features related to
severe weather continue to be used at forecast centers.
Many others have produced “rules of thumb” to help
identify patterns associated with severe weather in
localized areas. These techniques have traditionally been
written checklists such as the comprehensive severe
weather forecast checklist and reference guide by Gordon
and Albert(2000). Many checklists require a modified
morning sounding, time, and attention on the part of the
forecaster. When incorporating model soundings through
24 or 48 hours, checklist completion becomes less likely.
Many NWS offices have determined that the workload
issue does not allow a checklist to be done at all, while
other offices have a scaled-down version which saves
time but may decrease the usefulness of the data
obtained. GFE Smart Tools provide a method for
integrating these rules of thumb into a severe weather
potential identification process. 

Several prediction strategies are being formulated
and tested.  The most basic method is to use a color table
to highlight particular model parameter thresholds.
Another simple method is based on calculating multiple
grids of  the most significant individual sounding indicators
for a particular type of severe weather. Both these
methods are awkward and cumbersome involving trying
to correlate an excessive number of grids. 

Another method is to consolidate parameters using a
weighting system. This can be very effective. For
example, hail development is well correlated with strong
updrafts and cold mid-atmospheric temperatures (500-400
mb.) Thermodynamic instability and divergence are the
basis for strong updrafts in this strategy. Table 1 shows
the components for this strategy. Basically low, medium
and high thresholds are identified for each parameter
associated with a particular type of severe weather.
Within the Smart Tool framework, a value (0,1,2,3) is
assigned corresponding to a negligible, low, medium, or
high potential for each parameter threshold, The results
are then added to foresee an event that is low, moderate
or high risk. Table 1 illustrates that method where the sum
total of the values is less than 9 then expectations of hail
are low, sums between 9 and 18 are moderate and values
18 to 27 are high.  A Smart Tool easily extracts values
from a model of choice and then sums parameter

mailto:Jason.Deese@noaa.gov


threshold values to determine the hazard category of that
particular time frame.  Output grids on the GFE analyze
the threat for every 3 or 6 hours each day.  This gives the
forecaster additional flexibility to see atmospheric changes
through the course of the day. By calculating the nine
parameters listed in Table 1, and producing grids through
GFE, time constraints are eased providing greatly
enhanced severe weather recognition for the forecaster
including how that severe threat will change throughout
the day and saving time to view other severe weather
parameters or complete other shift duties. 

Table 1.  Hail prediction checklist with parameters and

corresponding Low, Moderate and High Thresholds. Values

associated with thresholds are summed to determine

category.

Hail

Model

Parameter

Units Low

Threshold

Mod erate

Threshold

High

Threshold

Value 1 2 3

CAPE JKg-1 1000 2000 3000

T500 C -7 -10 -13

T400 C -18 -21 -24

Freezing

level

m 4000 3500 3000

V850 m s-1 15 20 25

V700 m s-1 20 25 30

V500 m s-1 35 40 45

V300 m s-1 35 45 55

V200 m s-1 40 50 60

To tals 9 18 27

3. West Central Florida Severe Weather Data Base

The underlying data in the development of the smart
tools was derived from six years of archived data from the
Tampa Bay Area - Ruskin WSR-88D radar  accompanied
by sounding data from the same site. The radar archive
encompasses 118 cases with a variety of severe weather
scenarios that were first separated into four major
categories: damaging wind (19), hail (12), tornado (47),
and waterspout (41). 

Next the events were categorized by season. The
cool season - December through April is categorized by
convection coincident with mid-latitude troughs where
instability is typically confined to narrow regions, shear is
prevalent and organized convection is more likely.  The
early convective season - May and June, transitions
tropical air in the lower levels with some remaining mid-
latitude influence in the mid and upper levels.  The
summer season of July through September is dominated
by tropical air and weak shear. The transition months of
October and November are influenced by a mixture of mid
latitude and tropical systems.  

Events were then split into subsets of damaging wind,
hail, tornado, and waterspout based primarily on
convection configuration from radar reflectivity and
velocity data.  Some of the events produced more than
one dominant type of severe weather. For example, bow
echos typically produced damaging wind but some
produced tornadoes and hail. Some bow “like” echoes
were much smaller that others and those were often
related to tropical cyclone banding. Some of the organized
super cellular convection produced a combination of
damaging wind, hail, and tornadoes. Waterspouts fit into
three primary categories and occurred mainly during the
warm season: strong convection moving offshore and
intersecting low level boundaries, small but rapidly
developing cells near the land breeze boundary, and weak
cells embedded in westerly flow. Hail was primarily related
to colder than normal mid level temperatures leading to
more instability and faster hail growth. 

Only 1200 UTC sounding data was used for this
study. Some of the data were not necessarily
representative of the atmosphere at the time of the
weather but often 0000 UTC soundings are less
representative from prior or existing convection.  Table 2
shows the average and maximum (minium for negative)
values for selected sounding parameters. For this study,
the maximum and average values were used to capture
the upper range of the severe events. These values were
incorporated into smart tool thresholds. 

4. Developing the Smart Tools

The data from Table 2 shows a contrast between
season for damaging wind events. Although a regression
analysis of all cases during this time frame may produce
better results, for simplicity in this particular example, the
maximum (or minimum for negative values) is considered
the high threshold and the average is considered the low
threshold. The median between the average and the
maximum will be considered the moderate threshold. The
Smart Tool gets values from the AWIPS D2D database
using commands similar to this: 

t500 = self.getValue("TBW_D2D_MESOETAU", "t",
           "MB500", x, y, GridTimeRange)

Next the calculations are made to compute those
parameters that are not available directly from the model.
The python math library may need to be imported for
some of the calculations. The calculations may be made
within one smart tool and applied to one final grid. A better
method involves calculations made for several individual
grids using a procedure that bundles several Smart Tool
operations with a final Smart Tool calculation to infer the
hazard category in a separate grid.

4.  Conclusion

This paper describes a series of techniques that
enhance the severe recognition process through the use
of GFE and associated Smart Tools. The methodology
described provides an easy to assemble consistent
method for calculating the risk of severe weather using
the GFE. These processes can be run from a separate



GFE server with a larger domain. Cron routines can
automate the process of running GFE procedures that run
bundles of these smart tools. For the sounding data
presented in this case, only 12Z model grids are likely to
produce favorable results but Smart Tools are easily
updated to account for new findings at other periods. The
GFE automates normally time-consuming forecaster
tasks.  While these methods have shown great promise
for future operations, it is recognized that limitations with
model grid data, Smart Tool calculations and underlying
studies will keep forecaster attention paramount.

As these methods improve, the advances shown at
the Tampa Bay Area NWS in the severe recognition
process will prove to be important in other meteorological
disciplines such as hydrology and winter weather. By
being an open ended system with great flexibility, GFE
shows great promise for future operations.
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Figure 1.  The GFE interface and associated 6 hour
output grid for damaging wind prediction.

Table 2. 12Z Sounding param eters for damaging wind scenarios. 

WIND

DEC-APR  MAY-JUN JUL- SEP OCT-NOV

AVG MAX AVG MAX AVG MAX AVG MAX

 Lifted Index 4.1 -0.8 -5.3 -6.5 -3.1 -8.5 -3.5 -7.1

 SWEAT 202.7 254.3 169.5 187.0 181.6 252.8 223.5 283.7

 K index 15.8 29.3 26.6 31.7 31.2 36.3 25.0 33.3

 Cr oss totals 16.5 20.4 19.3 20.9 20.5 24.9 18.6 20.9

 Vertica l totals 22.8 24.3 26.8 26.9 25.2 27.9 24.6 26.9

 To tal-totals 39.3 44.5 46.1 47.8 45.7 50.8 43.1 47.8

 CAPE 17.5 114.8 1959.9 2282.9 1070.6 3255.5 1267.5 2215.8

 CIN -16.7 -29.9 -23.6 -26.5 -99.8 -182.3 -10.1 -18.8

 Equilibrium Level 39.3 866.7 184.9 193.1 259.1 518.7 242.7 378.5

 Bulk Richardson # 0.3 959.5 523.7 671.7 384.9 1258.9 64.9 154.1

 MML the ta 291.5 294.5 299.5 300.1 299.1 301.0 296.3 298.2

 MML m ixing  ratio 10.9 13.7 17.2 18.0 16.0 19.5 16.2 18.7

1000-500 mb thickness 5676.3 5684.0 5852.0 5867.0 5811.6 5897.0 5812.3 5857.0

Precipitable H2O(mm) 25.9 28.3 40.3 46.4 45.8 55.4 39.5 48.2


	Page 1
	Page 2
	Page 3

