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1. INTRODUCTION AND BACKGROUND 
 

Satellite-based Synthetic Aperture Radar (SAR) 
sensors provide high resolution (12 to 100 meters) 
images of the earth’s surface day or night and during 
most weather because they are active sensors 
operating in the microwave wavelengths (usually 3 to 
20 centimeters).  This makes them a potentially 
highly useful device for monitoring the earth, so 
much research has been done to determine the range 
of geophysical parameters that can be accurately 
estimated from SAR images.  In particular, extracting 
environmental information from SAR images over 
the ocean has been an area of research for many 
years, and multiple approaches have been developed 
for characterizing a range of ocean parameters such 
as waves, winds, surf and currents.  The work in this 
paper focuses on the use of SAR images to estimate 
wind vectors over the ocean and in coastal waters, 
and in particular to develop an operational and 
automated approach.  If proved reliable, SAR images 
may be the only way to provide high spatial 
resolution wind vectors in coastal regions.  

Almost all of these approaches to extract 
environmentally information from SAR images over 
the ocean are based on a standard theory for how a 
SAR images the ocean. This theory, often referred to 
as Bragg scattering (see Wright (1968) and 
Valenzuela (1978)) assumes that the variations in the 
SAR image brightness (or intensity) are proportional 
to the amplitude of ocean surface waves that are 
resonance to the electromagnetic wavelength of the 
SAR sensor.  These resonant ocean waves will have a 
wavenumber kB (where k = 2π/λ and λ is the wave 
length of the wave) such that kB = 2kEMsin[θ] where 
kEM is the wavenumber of the electromagnetic 
wavelength and θ is the incidence angle of the sensor.  
In addition, these resonant waves need to be 
propagating either directly toward or away from the 
sensor.  Thus the SAR is only observing very small-
scale waves that are propagating in very specific 
directions.  However, these small-scale waves are 
highly responsive to the local wind.  As the local 
wind speed increases the amplitudes of these waves 
increase and thus the SAR image brightness 
increases.  This phenomena forms the backbone of 
wind retrieval from SAR since it implies that the 
mean SAR image brightness (or radar cross section 
(RCS) as it is referred to when the image is 

absolutely calibrated) can be related to the local wind 
speed and direction.  Note that wind direction 
(relative to the direction the sensor is looking) is very 
important because the amplitude of the small-scale 
waves will change significantly according to their 
propagation direction with respect to the local wind.  
This means the SAR image RCS will also change as 
the SAR look direction changes even though the 
wind speed stays constant since the RCS is 
proportional to the amplitude of the waves it 
observes. 

Much work has been done to determine how to 
estimate wind vectors from SAR imagery based on 
this theory.  The general approach is shown in Figure 
1.  It assumes a model that predicts the RCS given 
wind speed and direction.  The procedure is to 
estimate the local RCS from the SAR image, estimate 
wind direction either from the SAR image or from 
some other source (most often from satellite-based 
scatterometers or from atmospheric models) then find 
the wind speed that reproduces the observed RCS. 

What differentiates the various approaches are 
the RCS model used and the manner to estimate wind 
direction.  For the European ERS-1/2 SAR sensors, 
which operate in VV polarization, the RCS model 
comes from validated scatterometer models (Vachon 
and Dobson (1996); Wackerman et al. (1996); 
Fetterer et al. (1998); Lehner et al. (1998); Lehner et 
al. (2000)).  For the Canadian RADARSAT-1 SAR 
sensor, which operates in HH polarization, no such 
validated models exist so two approaches have been 
tried.  The first is to derive an empirical modification 
to the VV models to convert them to HH polarization 
(Horstmann et al. (2000a); Horstmann et al. (2000b); 
Thompson and Beal (2000); Vachon and Dobson 
(2000); Horstmann et al. (2002); Monaldo et al. 
(2001)).  The second approach is to derive analytical 
models directly for HH polarization (Wackerman et 
al. (2002)). 
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Figure 1: General approach to wind vector estimation using
a SAR image.
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Various approaches have also been developed 
for estimating the wind direction.  One class of 
approaches estimates wind direction from the SAR 
image itself by noting that there are features in the 
imagery that tend to be aligned with the local wind.  
These can be wind rows, elongated convective cells, 
or surfactants on the ocean surface.  These directions 
can be estimated in the spectral domain via Fourier 
transforms (Gerling (1986); Vachon and Dobson 
(1996); Wackerman et al. (1996); Fetterer et al. 
(1998); Lehner et al., (1998); Horstmann et al. 
(2000a); Horstmann et al. (2000b); Vachon and 
Dobson (2000)) or in the image domain via gradient 
estimators (Horstmann et al., 2002) or wavelet 
analysis (Du et al. (2002); Fichaux and Ranchin 
(2002)).  The advantage of this class of approaches is 
that they generate the full wind vector solely from the 
SAR image without reference to any other data.  The 
disadvantages are that the resulting wind directions 
have a 180° ambiguity (since from a single SAR 
image the feature alignment is ambiguous with 
respect to ±180°) and the features that are being used 
may not always be present in the SAR image or 
aligned with the wind.  The second class of 
approaches utilize either simultaneous satellite-based 
scatterometer observations or atmospheric models to 
derive wind directions (Thompson and Beal (2000); 
Monaldo (2000); Monaldo et al. (2002)).  This class 
of approaches has the advantage that a wind direction 
will always be available since it is derived separately 

from the SAR image.  The disadvantage, particularly 
in the use of atmospheric  
models, is that the directions might not correspond 
accurately enough to the SAR image data. 

Table 1 gives a summary of performance for 
these algorithms drawn from a sample of the 
published literature.  Shown in Table 1 is the 
reference for the results and the sensor used (ERS = 
the ERS sensor, RAD = the RADARSAT sensor) 
with the number of images that went into the error 
estimation (although the Vachon and Dobson (2000) 
results are for the number of comparisons since the 
number of images was not described).  Next is shown 
the root-mean-squared error (RMSE) for estimating 
wind direction from the SAR image. Note that all but 
the two indicated results used spectral approaches for 
estimating wind direction.  Finally, the RMSE for 
wind speed is shown where three different wind 
direction are used.    In the first column the direction 
derived from the SAR image is used, in the next 
column directions from a satellite-based 
scatterometer are used, in the last column directions 
from an atmospheric model are used.  For the 
atmospheric models, the model name is indicated 
below the error.  The performance of the various 
algorithms are very similar, and to derive a general 
sense of performance, the RMSE values are averaged 
over the different sources and shown on the bottom.  
General wind direction RMSE is 29 degrees and 
wind speed RMSE is around 2.2 m/s. 

 
 

Source Sensor/# of 
images 

Dir. 
RMSE 

Speed 
RMSE (SAR 

dir.) 

Speed 
RMSE (Scat. 

dir.) 

Speed  RMSE 
(model dir.) 

Wackerman et al. 1996 ERS/9 19° 1.2 m/s   
Fetterer et al. 1998 ERS/61 37° 2.0 m/s   

Vachon and Dobson 2000 ERS/651 40° 1.9 m/s   
Vachon and Dobson 2000 RAD/771 40° 2.4 m/s   

Horstmann et al. 2000a RAD/4   2.7 m/s  
Horstmann et al. 2000a RAD/9    2.9 m/s 

(HIRLAM) 
Fichaux and Rachin 2002 

(direction via wavlets) 
ERS/1 16°    

Horstmann et al. 2002 
(direction via gradient) 

RAD/20 22° 3.5 m/s   

Monaldo et al. 2001 RAD/2862    2.0 m/s 
(NOGAPS) 

This paper RAD/32 32° 1.6 m/s   

Average Value  29° 2.1 m/s 2.4 m/s 2.3 m/s 
1 Number of comparisons, not  number of images. 
 
Table 1: Summary of wind vector estimation performance from various published papers. 
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The algorithm used in this paper will have the 
standard scatterometer model for VV RCS and the 
analytical model in Wackerman et al. (2002) for HH 
RCS, with wind directions estimated from the SAR 
image via spectral analysis.  The interest of the 
authors is in moving this algorithm toward 
operational implementation.  This means that: (1) the 
algorithm is completely automated; (2) it runs 
quickly; and (3) it can automatically remove “bad” 
wind direction estimates.  This last component can be 
essentially since, as noted above, it is often the case 
that the SAR image does not contain features 
adequate for estimating wind direction.  An 
operational algorithm needs to recognize this and 
replace the “bad” direction with an interpolated 
direction from its neighbors, or a default direction if 
the SAR image contains absolutely no wind direction 
information. In this paper we present initial results on 
our operational version of the wind vector algorithm 
and validate it with in situ buoy observations.  
 
2. ALGORITHM DESCRIPTION 

 
As mentioned above, Figure 1 shows the general 

flow of the algorithm.  In developing the specific 
algorithm described in this section, we have 
attempted to make the algorithm operational in that it 
is totally automated and runs in a reasonable amount 
of time. 

The first step is to estimate wind directions for a 
grid superimposed over the image.  This is done by 
using the Fast Fourier Transform (FFT) to estimate 
the local spectrum of the image, then use the lower 
wavenumber portion of the spectrum to determine the 
direction of long-scale features in the image.  SAR 
images are noisy however, so some smoothing of the 
spectrum is required.  This is performed in two ways.  
First, multiple, overlapping, spectra are calculated for 
a given location and averaged.  Second, the averaged 
spectrum is median filtered within a specified 
wavenumber annulus to reduce noise.  In addition, 
the local image subset is flattened to reduce leakage 
from the DC component of the spectrum into the low 
wavenumber regime.  The specific steps are as 
follows. 

• The user specifies a local box size within 
which a wind direction will be estimated, a 
local FFT size (usually smaller than the box 
size), and the number and placement of the 
FFT’s within the local box. For the results in 
this paper, four spectra were averaged for 
each wind direction where each spectra 
region had a 50% overlap with the 
neighboring spectrum. 

• Each local box is flattened by applying a 
large average filter, then dividing by the 
filtered image. 

• The FFT’s are applied and the resulting 
spectra are averaged 

• An annulus is applied to the spectrum to 
zero out any energy outside of a 
wavenumber region.  For the results in this 
paper, the limits of the annulus were set to 
wave lengths of 3 km to 15 km. 

• A 2D median filter is then applied to the 
spectrum.  For the results in this paper the 
median filter was 3x3 samples. 

• A 2D polynomial is fit to the resulting 
spectral samples and the direction through 
the origin which has the largest quadratic 
term (i.e. the widest extent) is determined.  
The wind direction is then assumed to be 
90° from this direction. 

 
Once all of the wind directions have been 

estimated for each grid point within the image, the 
directions are then spatially averaged with a weighted 
average where the weights are the normalized mean 
RCS values.  This eliminates directions over dark 
regions in the image that are coming strictly from 
noise, and also imposes a smooth wind field across 
the entire image. 

To handle land regions, a land mask is generated 
for each image from map data.  If the middle of the 
local box is over land, that wind direction is not 
generated.  If there are land pixels within the local 
box, they are set to the mean of the water samples 
within the box before the processes listed above are 
performed.  This allows wind directions to be 
estimated close to shore as well as within water 
regions that may be behind land features or within 
large rivers.  However, at least half the local box 
must be water samples or else it is ignored. 

This process assumes that within the local box 
there is a feature in the SAR image that is aligned 
with the local wind.  This is not always going to be 
true, so work is ongoing to determine whether a 
metric can be developed that will automatically flag a 
local box if it can not be used to generate an accurate 
wind direction.  In that case it would be ignored as 
land regions are ignored.  To date we have found that 
the shape of the 2D polynomial can provide some 
information, and in particular the ratio of the 
quadratic coefficients (minimum over maximum) for 
the two dimensions can characterize the shape of the 
low wavenumber energy.  The ratio needs to be in the 
range [0.2,0.8] for the local box to generate accurate 
directions; if it is close to zero (or negative) or too 
large, that indicates that the low wavenumber spectral 
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region has anomalies that make it suspect.  We are 
currently investigating additional metrics to use. 

The resulting wind direction will have a 180° 
ambiguity since the procedure described below can 
not distinguish which direction along the feature the 
wind is blowing.  Other image features may be able 
to resolve this ambiguity (such as wind shadowing), 
but to date we have not come up with an automated 
approach to do this.  In the validation results below, 
the wind direction ambiguity is resolved by using 
whichever is closest to the in situ observations. 

Once the wind directions are determined, we 
then estimate wind speed by inverting a RCS model.  
An analytical model was developed to handle the HH 
polarization imagery from RADARSAT and 
compared to other models in Wackerman et al. 
(2002).  We showed that the analytical model had 
some improvements over other approaches, but was 
very similar to the model described in Thompson and 
Beal (2000).  We are currently implementing the 
analytical model via a look-up table approach since 
the model itself is too computationally intensive to 
run for each wind estimate.  RCS values are pre-
calculated for a table of incidence angles, wind 
speeds, and sensor look directions (with respect to the 
local wind direction).  A RCS value is then calculated 
for a given incidence angle, wind speed, and look 
direction using bi-linear interpolation within the 
table.  For the table, wind speed is sampled every 1 
m/s, incidence angle is sampled every 2.5 degrees, 
and look direction is sampled every 5 degrees.  This 
work is still on-going, so for the results in this paper 
the RCS model in Thompson and Beal (2000) will be 
used. 

The resulting algorithm is totally automated, and 
can process an entire RADARSAT widescan SAR 
image in approximately 10 minutes of elapsed time 
on a multi-user SPARC2 workstation.  We believe 
this is well within the required specifications for an 
operational system. 
 
3. VALIDATION RESULTS 
 

To validate the performance of the algorithm, 32 
RADARSAT SAR images collected off of the east 
coast of the United States were used.  The images 
contained locations of NOAA buoys which recorded 
the local wind speed and direction.  Some images 
contained multiple buoy locations and so 52 
comparisons were generated.  Figure 2 shows an 
example of the results of the algorithm.  The white 
lines are the SAR-derived wind vectors; the direction 
represents the wind direction and the length 
represents the wind speed.  The lines have no arrow 
heads, indicating the 180° ambiguity of the SAR-
derived directions.  The red lines represent the in situ 

buoy wind vectors that were used for validation.  The 
buoy data was only used if it was located within the 
image. 

Figure 3 shows the results of the wind direction 
estimation procedure where the SAR-derived wind 
directions are plotted versus the buoy wind 
directions.  Because of the 180° ambiguity in the 
SAR-derived directions, they have been resolved to 
the direction that is closest to the buoy direction.  
Figure 3 contains a solid line where the points would 
fall if they were perfect and two dashed lines that 
indicate the worse possible result (i.e. ±90° from the 
buoy direction).  The stars in Figure 3 represent 
directions estimate from the SAR image without any 
spatial smoothing of the wind directions and the solid 
circles represent the results with spatial smoothing.  
All the spatial smoothing has done is remove the one 
significantly errant point toward the left of the plot, 
although it has dropped the RMSE from 36 ° to 32°.  
Any wind vector whose ratio of quadratic coefficients 
were outside of the range mentioned below were 
eliminated from the test.  Without this step the RMSE 
was 41°.  Seven vectors were eliminated with this 
test, five of which were visually correlated to features 
not generated by the local wind. 

Figure 4 shows the wind speed results.  The stars 
represents estimated wind speed using the algorithm 
as described here.  The resulting RMSE is 4.0 m/s.  
However one can note a definite trend in Figure 4 
where the higher wind speeds are being over 
estimated.  In fact, Figure 5 shows a plot of wind 
speed error versus the SAR-derived wind speed 
which indicates a linear trend.  This is a bias in the 
algorithm, perhaps due to calibration errors in the 
RADARSAT imagery or errors in the RCS model 
being used.  However, since we know the x-axis of 
Figure 5 (it is the estimated wind speed, not the 
actual wind speed) we can in fact estimate this bias 
and remove it as part of the algorithm.  The results 
using this empirical correction are shown in Figure 4 
as solid circles.  Note that the RMSE is now 1.6 m/s.  
These results are included in Table1 for comparison. 
 
4. OPERATIONAL IMPLEMENTATION 
 

The algorithm is currently running in a quasi-
operational setting as part of the NOAA/NESDIS 
Alaska SAR Demonstration Project (Pichel and 
Clemente-Colón, 2000).  RADARSAT SAR imagery 
is acquired by the Alaska SAR Facility over the coast 
of Alaska, processed into imagery, and sent to the 
NOAA/NESDIS facility.  There, the wind vector 
algorithm is run automatically whenever imagery 
arrives and the resulting vectors (both a graphic that 
overlays the wind vectors onto the SAR image as  
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Figure 2: Example results from the wind vector algorithm.  SAR-derived vectors
are shown in white.  Buoy vectors are shown in red.  This is for RADARSAT
SAR imagery collected 1997, Day 326, Time 223301.

Figure 3: Algorithm performance for estimating wind direction.  SAR-derived directions (y-
axis) vs. buoy wind directions (x-axis).  Solid circles represents results without any spatial
smoothing (RMSE = 36 degrees), stars are results after applying the spatial smoothing
(RMSE = 32 degrees).  Directions which violated the ratio of polynomial coefficients have
been removed.

Polynomial Algorithm Results Limited by Ratio of Quadratic 
Coefficients
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Figure 4: Algorithm performance results for estimating wind speed.  SAR-derived wind speeds
(y-axis) using SAR-derived wind directions are plotted vs. buoy wind speeds (x-axis).  Stars are
original algorithm (RMSE = 4.0 m/s) which showed a clear bias with respect to wind speed.
Solid circles represents application of the empirical correction (RMSE = 1.6 m/s).
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Figure 5: Wind speed error from the original algorithm versus the estimated wind speed.  Note
the strong linear trend.  Since we know the x-axis value (it is the estimated speed not the actual
speed) we can correct for the trend.
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well as an ascii file that contains the wind vector 
information) are posted to a password-controlled web 
site.  Users in Alaska can then access the web site to 
download the wind information.  Wind data is 
available from 5 to 6 hours after acquisition, the 
delay driven mainly by time to process the SAR data 
into and image and time to transfer the data.  The 
project has been ongoing for a number of years now 
and has demonstrated the ability to routinely generate 
wind vector information from SAR imagery. 
 
5. FUTURE WORK 
 

As mentioned above, work is ongoing to 
determine whether a better set of metrics exists for 
automatically eliminating wind directions from local 
regions and replacing them with either an 
interpolated direction from the neighboring regions, 
or some default direction if the SAR image contains 
no useful direction information.  Work is also 
ongoing to incorporate the analytical RCS model into 
the wind speed estimation. 
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