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1. Introduction 

The measured atmospheric CO2 growth rate is half 
that expected based on fossil fuel emissions.  Modeling, 
isotope, and inversion studies place mu1ch of this 
“missing sink” in the northern hemisphere terrestrial 
biosphere.  The global, atmospheric CO2 growth rate 
shows a great deal of inter-annual variability [Conway et 
al., 1994; LLoyd, 1999; Rayner and Law, 1999; Tans 
and Wallace, 1999; Bousquet et al., 2000; Fung, 2000].  
The ocean fluxes show relatively low variability [Rayner 
and Law, 1999, Le Quéré et al., 2000], so growth rate 
variability is attributed primarily to changes in the 
terrestrial sink [Sarmiento, 1993, Conway et al., 1994; 
Trolier et al., 1996; Kaduk and Heimann, 1997; LLoyd, 
1999; Houghton et al., 1998; Tans and Wallace, 1999; 
Houghton, 2000; Prince et al., 2000].  Climate, land use 
change, natural disturbance, CO2 fertilization, and 
nitrogen deposition all affect terrestrial CO2 fluxes 
[Conway et al., 1994; Bousquet et al., 2000, Fung, 
2000, Houghton, 2000].  Climate is most important 
[Houghton, 2000], but how precipitation, temperature, 
and other climate factors control net terrestrial CO2 
fluxes is unclear.   

Net Ecosystem Exchange (NEE) is the net CO2 flux 
from the terrestrial biosphere: 

GPPRNEE −= , (2) 
where R is respiration, and GPP is gross primary 
production or photosynthesis.  Photosynthesis removes 
CO2 from the atmosphere and respiration returns CO2 to 
the atmosphere.  A positive NEE indicates a net CO2 

flux into the atmosphere.  Breaking R into autotrophic 
and heterotrophic respiration gives 

GPPRRRNEE CRH −++= , (3) 
where RH is heterotrophic respiration, RR is root 
autotrophic respiration, and RC is canopy autotrophic 
respiration.  Heterotrophic respiration is the decay of 
organic material by microorganisms.  Autotrophic 
respiration is the release of CO2 during plant 
maintenance and growth.  Combining terms gives 

ng ARNEE −= . (4) 
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where RHg RRR +=  is ground respiration and  

Cn RGPPA −=  is canopy net photosynthesis.  Rg 
depends on soil temperature, soil moisture, and the 
mass of carbon in the soil [Parton et al., 1993; Raich et 
al., 1991; Hunt et al., 1996; Sitch et al., 2000].  An is 
resource-limited by Rubisco (nitrogen) availability, 
available light, or leaf export capacity.  An depends on 
soil moisture, canopy temperature, humidity, and the 
number of leaves (i.e., LAI) [Sellers et al., 1996a,b].   

Lacking direct measurements, we estimate global 
NEE from satellite data, inversions, and models.  
Satellite data, e.g., the Normalized Difference 
Vegetation Index (NDVI), is used to estimate 
photosynthesis [Ichii et al., 2001], but does not contain 
information on respiration.  Inversions can estimate NEE 
for continental scale regions, but cannot isolate exact 
causes of variability [e.g., Bousquet et al., 2000].  
Terrestrial carbon models suggest precipitation and 
temperature influence NEE inter-annual variability, but 
disagree because of differences in how explicitly they 
represent photosynthesis and respiration processes 
[Kaduk and Heimann, 1997; LLoyd, 1999; Dickinson, 
2000; Houghton, 2000].  We used detailed plant 
photosynthesis and respiration models to 1) quantify 
how climate influences NEE inter-annual variability, 2) 
explain regional and ecosystem differences, and 3) 
explain the effects of phenomena known to affect 
precipitation and temperature. 

2. Methods 

We used the Simple Biosphere model, Version 2 
(SiB2) to estimate NEE for 1983 to 1993 on a global, 1° 
by 1° grid with a 10-minute time step [Sellers et al., 
1996a].  We investigated the effects of climate only and 
did not consider variability due to ocean uptake, fossil 
fuel emissions, land use, CO2 fertilization, natural 
disturbances, or nitrogen deposition.   

SiB2 has high time resolution and detailed plant 
physiology to isolate the long-term influences of climate 
factors with strong diurnal variability, such as 
precipitation and temperature.  SiB2 uses the Farquahar 
et al. [1981] photosynthesis model scaled to the canopy 
level [Sellers et al., 1996a], the Ball-Berry-Collatz 
stomatal conductance model [Ball, 1988, Collatz et al., 
1991, 1992], and the respiration model of Denning et al. 
[1996].  SiB2 accounts for the effects of snow cover, 
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rainfall interception by the canopy, and aerodynamic 
turbulence [Sellers et al., 1996a].   

As input, SiB2 requires Leaf Area Index (LAI), 
vegetation cover fraction, vegetation type, soil type, and 
weather data.  We estimated LAI using global, 1° by 1° 
composite maps of NDVI adjusted for missing data, 
satellite orbit drift, differing instrument calibrations, 
sensor degradation, and volcanic aerosols [Sellers et 
al., 1994a; Los et al., 1998; Los et al., 1999].  The 
vegetation characteristics and soil types came from 
Sellers et al. [1996b].  We used the DeFries and 
Townshend [1994] global map of 11 vegetation types.  
We estimated vegetation cover fraction using the Los et 
al. [2000] method, but used the peak NDVI value for the 
entire 11-year period. 

Weather data came from the European Centre for 
Medium-range Weather Forecasts (ECMWF) 
Reanalysis [Gibson et al., 1999].  ECMWF Reanalysis 
contains surface temperature, pressure, wind speed, 
precipitation, and radiation data every 6 hours.  Except 
for the incident sunlight, the ECMWF data was linearly 
interpolated between data points.  The sunlight was 
scaled by the cosine of the solar zenith angle to assure 
no light falls on the canopy at night while conserving 
energy.  ECMWF data were available for 1978 through 
1993 and NDVI data for 1983 through 1999, limiting this 
study to 1983 through 1993.  

To calculate Rg, we adapted the respiration model 
of Denning et al.  [1996a]: 

fg RRR *= , (5) 

where R* is a combined soil temperature and moisture 
scaling factor and Rf is the respiration factor.  Rg 
increases exponentially with soil temperature [Raich and 
Schlesinger, 1992].  Rg increases with soil moisture to 
an optimum value then decreases (too much water 
limits the oxygen available to microbes) [Raich et al, 
1991].  The optimal soil moisture, Wopt varies between 
0.6 and 0.7, depending on soil type.   

We assumed An and Rg balance with a 1-year 
turnover time: carbon accumulated by photosynthesis is 
released via respiration over a period of one year.  This 
assures a balanced carbon cycle, but allows 
perturbations in photosynthesis in one year to affect 
respiration the following year.  Rf is the respiration rate 
that balances An when adjusted for soil temperature and 
water content: 
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We distribute the Accumulated carbon in the soil based 
on root density profiles that decrease exponentially with 
soil depth [Jackson et al., 1996].  We calculated a 
“rolling” Rf each month based on the previous 12 
months of An and R

*. 
Precipitation, temperature, relative humidity, 

sunlight, and available biomass all influence NEE.  We 
grouped these factors into those that effect GPP and 
those that effect R (Table 1).  Precipitation and 
temperature appear twice because they affect both.  

These variables change with the ECMWF weather data 
(which represents boundary layer values above the 
canopy), but also respond to changes in GPP and R 
and depend on the physical characteristics of the 
canopy and soil.  LAI represents above ground biomass 
and the rolling Rf represents variations in soil carbon.  
The influence of precipitation on GPP is limited to root 
zone soil moisture stress (i.e., drought stress).   

Table 1.  Climate factors, SiB2 variables, and 
associated reference values  

Climate Factor Group SiB2 Variable Reference 
Value 

Humidity GPP Leaf surface 
relative 
humidity 

1.0 

Light GPP Sunlight 
incident on 
canopy top 

200 W m-2 

Leaf Area 
Index 

GPP Leaf Area 
Index 

LAImax 

Temperature GPP Canopy 
temperature 

298.15 K 

Precipitation GPP Root zone soil 
water fraction 

1.0 

Temperature R Root zone soil 
temperature 

298 K 

Precipitation R Root zone soil 
water fraction 

Wopt 

Soil Carbon R Respiration 
factor 

Rfmean 

To quantify climate influences on NEE variability, 
we calculated reference rates for GPP and R for each 
climate variable and compared them to the actual rate: 

GPPGPPE ii −=  or RRE ii −=  (7) 

where Ei  is the influence and GPPi and Ri are reference 
rates for the ith climate variable. The absolute value 
ensures non-negative monthly averages of Ei.  All Ei 
were calculated each time step and have units of flux.   
When a variable does not influence NEE, 0=iE .  For 
example, precipitation variability only affects GPP when 
the soil gets too dry (i.e., drought stress).  

To calculate the reference rate (GPPi or Ri), we 
kept all inputs the same and changed the ith climate 
factor to a reference value as listed in Table 1.  As 
humidity decreases, stomata close to minimize water 
loss (i.e., humidity stress), so we chose the optimal 
humidity value of 1.0.  For LAI, we chose the maximum 
LAI for each biome [Sellers et al., 1996b].  For 
precipitation influence on GPP, we chose fully saturated 
soil ( 0.1=W ).  For precipitation influence on R, we 
chose the optimal soil water content for maximum 
heterotrophic respiration, Wopt [Raich et al., 1995].  For 
temperature influence on GPP and R, we chose 
reference values from Sellers et al. [1996a].  For 
sunlight we chose a typical saturated value (the canopy 
usually absorbs more light than it uses for 
photosynthesis).  For soil carbon, we chose an average 
respiration factor for all months, Rfmean. 
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To assure Ei scales properly with GPP or R, (i.e., Ei 
is small when GPP is small and large when GPP is 
large), we calculated weighted monthly averages: 

GPP

EGPP
E i

i
⋅

=  or 
R

ER
E i

i
⋅

= ,           (8) 

where the overbar represents a monthly average.  We 
calculated mean seasonal variations from global maps 
of monthly averages by averaging all Januaries, 
Februaries, etc.  This produced one global map for each 
month representing the seasonal variation.  Subtracting 
seasonal variation maps from monthly average maps 
produced monthly anomaly maps: 

XXX
~

−=′ , (9) 
where X ′  is the monthly anomaly, X  is the monthly 

mean, and X
~

is the seasonal variation of variable X.  
From anomaly maps, we produced maps of standard 
deviation, correlation, and other statistical parameters.  
Multiplying by grid cell area (which varies with latitude) 
and adding all land pixels produced total global land 
fluxes as a function of time.   

3. NEE Variability  

The northern hemisphere has more land and 
vegetation than the southern hemisphere and 
dominates the global NEE seasonal cycle (Figure 1).  
NEE is most strongly negative during the northern 
hemisphere summer when global GPP is greatest.  NEE 
is most strongly positive in northern hemisphere fall 
when assimilation drops off and global R dominates.  
The secondary minimum in November results from the 
surge in global GPP in the southern hemisphere spring.   
The NEE averages to zero over many years.  However, 
small changes in GPP and R each year result in inter-
annual NEE variability of about 2±  GtC year-1.   

The simulated global NEE anomalies agree fairly 
well with the measured global CO2 growth rate (Figure 
2) [Conway et al., 1994], with estimates of McGuire et 
al. [2001] using biogeochemical models, Bousquet et al. 
[2000] with inversions of flask measurements using a 
transport model, and with the from the long-term Mona 
Loa record [Kaduk and Heimann, 1997].  Error in our 
simulated NEE may result from 1) NDVI interpolation 
over tropical forests to account for persistent cloud 
cover [Los et al., 2000], 2) assuming a uniform 1-year 
carbon turnover time for all biome types, 3) exclusion of 
ocean fluxes, 4) transport lag between surface fluxes 
and flask measurements, and 5) SiB2 approximations. 

A map of NEE standard deviation (Figure 3) shows 
tropical grasslands have the highest variability followed 
by northern extra-tropical forests.  Equatorial rain forests 
have fairly low variability except for the western half of 
the Amazon basin.  The large South American anomaly 
results from precipitation variability from El Niño-
Southern Oscillation (ENSO) and potential problems 
with the ECMWF precipitation data (see below).  
Although deserts are highly variable relative to their 
seasonal amplitude, low GPP results in low NEE 
standard deviations.   

Variability in the Northern extra-tropics is not as 
spatially uniform as implied in Figure 3.  A typical map of 
simulated NEE anomalies for July 1984 (Figure 4) 
shows a pattern of alternating positive and negative 
regions across the northern hemisphere.  Anomaly 
amplitudes range from 0.2 to 0.4 GtC yr-1 with periods of 
2-3 years.  These regional anomalies tend to cancel, 
negating the effect of much greater land area in the 
northern hemisphere.  While the northern hemisphere 
dominates the global NEE seasonal cycle, the tropics 
dominate global NEE inter-annual variability.   

4. Climate Influences 

NEE anomalies depend on the relative magnitude 
of GPP and R anomalies because both respond in 
similar ways to climate and tend to cancel each other.  
The relative magnitude of GPP and R variance 
measures their relative influence NEE variability: 

)( 22

2

RGPP

GPP
GPPf

σ+σ
σ=  and 

)( 22

2

RGPP

R
Rf σ+σ

σ= ,

 (10) 
where fGPP and fR are relative influences, σGPP and σR 
are standard deviations, and 2

GPPσ  and 2
Rσ  are 

variances of GPP and R.  When 0=Rf , respiration has 
no influence on NEE inter-annual variability; when 

1=Rf , respiration totally controls NEE variability (by 
definition, RGPP ff −= 1 ).   

R dominates NEE variability at high latitudes 
(Figure 5) while GPP and R exert roughly equal 
influences in the highly variable tropical grasslands.  
Although GPP variability almost totally controls the 
deserts, these regions have such low GPP they do not 
significantly affect global NEE inter-annual variability.  
Overall, R accounts for 59% and GPP for 41% of the 
global NEE inter-annual variability. 

Climate variables do not vary independently of one 
another.  For example, increasing canopy temperature 
increases GPP, but decreases relative humidity (which 
decreases GPP).  Comparing relative magnitudes of iE  
variance accounts for such cancellation.  The total 
influence of the GPP group cannot exceed the relative 
influence of GPP itself such that 

GPP
i

i
i ff

∑σ

σ
=

2

2

 or R
i

i
i ff

∑σ

σ
=

2

2

,     (11) 

where fi is the relative influence of the ith climate factor 
and 2

iσ  is the variance of iE .  When 0=if , the climate 
factor has no influence and when 1=if , the climate 
factor totally controls NEE inter-annual variability.  By 
definition, the sum of all fi for both the R and GPP 

groups equals one ( 1=∑ if ).  Maps of fi show strong 

regional differences in the influence of climate on NEE 
variability (Figure 6).   

Precipitation control of GPP (Figure 6a) and R 
(Figure 6b) dominate throughout the tropics.  The GPP 
and R precipitation influence patterns do not 
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significantly overlap.  The demarcation lies roughly 
where the average soil moisture equals Wopt.  This 
division is especially clear in regions with a strong 
spatial gradient in soil moisture (e.g., sub-Saharan 
Africa and South America).  The soil moisture influence 
on GPP represents drought stress.  In semi-arid and 
desert regions with drier soils ( optWW < ), precipitation 

control of GPP dominates because respiration can 
occur even in very dry soils while GPP ceases below 
minimum soil water content.  In nearly saturated soils 
( optWW > ), precipitation changes effect respiration, but 

do not induce drought stress, so precipitation control of 
R dominates.   

The large NEE anomaly in South America (Figure 
3) may result from problems with the ECMWF 
precipitation data as well as naturally occurring drought 
stress.  Spatial patterns of precipitation differ between 
datasets derived from rain gauge data and those from 
reanalysis using a model [Costa and Foley, 1998].  The 
precipitation data from the ECMWF reanalysis is 
diagnostic and unconstrained by rain gauge 
measurements.  The spectral representation of 
topography in ECMWF produces false undulations in 
the land surface, creating potentially suspect 
precipitation anomalies in South America [Costa and 
Foley, 1998].  Bright NDVI data may indicate plant 
growth, but the ECMWF may systematically put the rain 
somewhere else, resulting in drought stress.   

Temperature influence on respiration dominates 
NEE variability at high latitudes (Figure 6d).  The 
temperature response function for R is exponential, so 
small soil temperature anomalies can produce large R 
anomalies, especially during peak temperatures in the 
summer.  By contrast, GPP is relatively insensitive to 
temperature except at extreme high and low 
temperatures (Figure 6c).  The resulting temperature 
influence on GPP is very small and reflects variability in 
temperature extremes at high latitudes, high altitudes, 
and deserts.  Essentially, R goes up and down with 
temperature relative to a more stable GPP.   

LAI influences NEE inter-annual variability in 
tropical grasslands and high-latitude forests and tundra 
(Figure 6e).  The LAI influence represents the indirect 
effect of climate (precipitation, temperature, snow cover, 
etc.) on plant growth, probably when the ecosystem is 
most sensitive, such as spring [Houghton, 2000].  In 
general, snow cover influences LAI in the high northern 
latitudes, temperature in the mid-latitudes, and a 
combination of precipitation and temperature in the 
tropics [Los et al., 2001]. 

Soil carbon influence is fairly evenly distributed, 
peaking at the equator and decreasing towards the 
poles (Figure 6f).  Like LAI, soil carbon represents the 
indirect effects of climate on soil organic matter due to 
GPP anomalies.  The resulting soil carbon anomalies 
last a year because of the assumed 1-year turnover 
time in the rolling respiration factor.  Consequently, 
regions where GPP dominates NEE variability also 
show a strong soil carbon influence.   

Humidity has a weak, but fairly uniform influence 
(Figure 6g).  Transpiration during photosynthesis 

generally keeps the leaf surface humidity near 
saturation, making it insensitive to changes in ECMWF 
humidity (defined in the boundary layer above the 
canopy).  Humidity influences GPP only when high 
sensible heat flux mixes relatively dry boundary layer air 
down into the canopy, reducing the humidity at the leaf 
surface and causing humidity stress. 

Although globally weak, sunlight shows a fairly 
strong regional influence in equatorial tropical forests 
where persistent cloud cover reduces the light available 
for plant growth (Figure 6h).  In SiB2, photosynthesis is 
light-limited only at low light levels in the early morning 
and late evening (sunlight below about 100 W m-2).  At 
other times, nitrogen availability or export capacity limit 
GPP.  The length of time each day that GPP is light-
limited determines the overall influence of sunlight.  
Precipitation anomalies change the cloud cover and 
incident sunlight, which determines the length of time 
each day when GPP is light-limited.   

Because of the regional cancellation in the northern 
hemisphere, precipitation in the tropics dominates the 
simulated global NEE inter-annual variability.  
Precipitation influence on GPP and R combined account 
for 44% of the global NEE variability (precipitation 
influence on GPP accounts for 32% while precipitation 
influence on R accounts for 12%).  Variability in LAI and 
soil carbon combined account for 35% of global NEE 
variability (23% and 12% respectively).  Humidity and 
sunlight influences on global NEE variability are very 
weak (2% and 3% respectively).  Temperature accounts 
for 16% of the global NEE inter-annual variability.  The 
temperature influence on GPP is weak (1% globally).  
Despite dominating the northern hemisphere, regional 
cancellation reduces the global influence of temperature 
on respiration to 15% of the simulated global NEE 
variability.  Having quantified these influences, we 
examined in detail two climatic phenomena known to 
effect inter-annual variability in temperature and 
precipitation: the Arctic Oscillation and the El Niño-
Southern Oscillation.   

5. The Arctic Oscillation and NEE Variability 

The Arctic Oscillation (AO) is characterized by a 
north-south dipole in the strength of the zonal wind 
between 35°N and 55°N [Thompson and Wallace, 2000; 
Thompson and Wallace, 2001].  Positive AO polarity 
has stronger westerly winds north of 45°N and weaker 
winds south of 45°N, which favors increased advection 
of relatively warm oceanic air deep into continental 
interiors.  Negative AO polarity has weaker mean zonal 
flow and more blocking, pulling cold Arctic air masses 
down into continental interiors.  Positive AO polarity 
produces positive temperature anomalies over land; 
negative polarity produces negative anomalies.  Since 
the AO primarily influences the northern hemisphere 
and since 50% of all northern hemisphere NEE 
anomalies occur in summer, we focused our analysis on 
June-July-August (JJA). 

Figure 7 shows summer (JJA) correlations of air 
temperature and soil moisture with an AO index based 
on the first principle mode of sea level pressure 
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anomalies from the NCEP reanalysis [Thompson and 
Wallace, 2000].  Figure 8 shows JJA correlations of 
GPP, R, and NEE with the AO index.  The AO index, 
GPP, and temperature data show positive trends for 
1983-93 [Los, 1998, Thompson et al. 2000], which we 
removed prior to correlation.  We omitted correlations 
failing the t-test at 95% significance [Devore, 1995].  
The degrees of freedom for the t-test are based on the 
total number of summer months in our simulation 
(assuming each month is independent).  Warm air 
advection associated with positive AO polarity shows up 
as positive temperature correlations in northern Europe, 
Canada, and central Asia.  The reduced blocking 
associated with positive AO polarity deceases rainfall in 
the same regions, resulting in negative soil moisture 
correlations. 

Figure 8 indicates the AO signal is strongest in 
northern Europe for GPP and R, but competing effects 
and cancellation result in weak AO correlations with 
NEE.  As seen in Figure 6, several climate factors 
control NEE variability in Northern Europe: temperature 
(via GPP and R), LAI, precipitation (via R), and 
humidity.  Decreased R due to reduced soil moisture 
partially cancels increased R due to higher 
temperatures.  Decreased GPP due to increased 
humidity stress partially cancels increased GPP due to 
warmer temperatures.  The result is modest positive AO 
correlations with R and GPP.  While both GPP and R 
increase with temperature, R responds more vigorously.  
The GPP anomalies partially cancel the R anomalies, 
resulting in weak positive NEE correlations.  Similar 
cancellation occurs in Canada and central Asia resulting 
in even weaker NEE correlations with the AO.  
Correlations scattered throughout the southern 
hemisphere are probably random associations and do 
not reflect direct influence by the AO. 

Overall, temperature effects from the AO dominate 
over precipitation effects.  The limited spatial extent of 
the AO influence combined with cancellation effects 
result in a very weak AO signal in the NEE variability in 
summer.  The AO can explain part of the strong 
temperature influence across the northern hemisphere 
and the Northern Europe portion of the simulated spatial 
pattern for NEE, but not the 2-3 year cycle in NEE 
variability. 

6. ENSO and NEE Variability   

El Niño-Southern Oscillation (ENSO) is 
characterized by weaker or stronger trade winds in the 
equatorial Pacific.  Weaker trade winds (El Niño) cut off 
cold-water upwelling off of South America and shift the 
Pacific warm water pool from off Asia eastward to the 
central Pacific. Strong trade winds (La Niña) push the 
Pacific warm pool westward towards Australia.  El Niño 
and La Niña are the extremes of alternating sea level 
pressures between east and west Pacific known as the 
Southern Oscillation.  The Pacific warm pool moving 
with ENSO has a domino effect, shifting rainfall and 
temperature patterns around the globe [Green et al., 
1997].  ENSO has a period of two to seven years.  Our 
simulation covered two El Niño events and part of a 

third (1982-83, 1986-87, and 1991-92) and two La Niña 
events (1984-85, 1988-89).   

Figure 9 shows correlations of air temperature and 
soil moisture with a Southern Oscillation Index (SOI) 
based on the sea level pressure difference between 
Tahiti and Darwin for 1983-93.  We removed trends and 
omitted correlations failing the t-test at 95% significance.  
Negative SOI corresponds to El Niño; positive SOI 
corresponds to La Niña.  Negative correlations mean 
increases during El Niño; positive correlations mean 
decreases during El Niño.   

Rainfall patterns throughout the tropics shift as the 
Pacific warm pool moves east and west with ENSO.  
For example, rainfall (and thus soil moisture) in Australia 
drops during El Niño as the Pacific warm pool moves to 
the east, resulting in positive SOI correlations.  
Decreased rainfall reduces cloud cover, increases solar 
heating, and reduces evaporative cooling [Kaduk and 
Heimann, 1997], which increases temperature and 
produces negative SOI correlations.  Temperature is 
fairly constant in the tropics, so although the correlations 
appear strong, the effect is small.  In East Russia, 
reduced cloud cover associated with reduced 
precipitation during El Niño increases radiative cooling, 
decreasing temperatures and producing negative SOI 
correlations.  In summary, ENSO primarily affects global 
precipitation and soil moisture patterns and weakly 
influences temperature.   

The effects of shifting rainfall patterns on GPP and 
R can cancel (Figure 10).  For example, in Australia and 
India, both R and GPP show positive correlations with 
SOI (both decrease as precipitation drops during El 
Niño).  Precipitation controls NEE variability for Australia 
and India (Figures 6a and 6b).  Areas controlled by 
drought stress show negative NEE correlations 
( GPPR >  during El Niño).  Areas controlled by soil 
moisture for respiration show positive NEE correlations 
( GPPR < during El Niño).  Zero NEE correlations 
indicate the R and GPP anomalies cancel. 

The large NEE anomaly in South America (Figure 
3) results from drought stress due to rainfall shifting with 
ENSO.  The soil water content relative to the optimum 
for respiration, Wopt, drives the spatial pattern of this 
anomaly.  The average soil water content exceeds Wopt 
in the Amazon basin and decreases southward and 
westward to less than Wopt in the highlands of central 
and western South America.  During El Niño, rainfall 
shifts from the Amazon basin and central South America 
to the west and southeast.  The soil water in the 
Amazon basin decreases and respiration increases, but 
GPP is not affected, resulting negative correlations for R 
and NEE, but weak correlations for GPP.  In the central 
South American highlands, the soil water is less than 
Wopt, so decreased rain during El Niño reduces R and 
introduces drought stress, resulting in positive R and 
GPP correlations.  Drought stress coupled with possible 
problems with the ECMWF precipitation data (described 
above) produce a highly variable NEE anomaly, but 
partial cancellation between GPP and R weakens the 
NEE correlation with ENSO.    

The ENSO influence above 30°N is weak.  
Temperature variability due to ENSO shows up as a 
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strong correlation with R in east Russia.  The high 
values of LAI influence on NEE variability (Figure 6g) 
and corresponding high soil moisture correlations 
indicate ENSO influences snow cover, melting times, 
and spring plant growth [Kaduk and Heimann, 1997; Los 
et al. 2001] in Europe and Canada.  This may partly 
explain the simulated NEE anomaly pattern in the 
northern hemisphere.  However, ENSO does not explain 
the strong temperature influence across the northern 
hemisphere or the 2-3 year cycle in NEE variability. 

Overall, ENSO primarily affects NEE variability in 
the tropics through changes in precipitation, explaining 
much of the NEE variability simulated in South America, 
Africa, and Asia.  While our correlations are statistically 
significant at 95% assuming each month is independent, 
our simulation covers only three ENSO cycles.  Our 
results are consistent with that expected from ENSO, 
but a more rigorous analysis requires simulations of 
several decades. 

7. Conclusions 

The global NEE from our simulation captured the 
salient features of the observed global CO2 growth rate.  
The detailed process information and high time 
resolution in SiB2 allowed us to isolate and quantify the 
influences of climate on global and regional inter-annual 
variability of NEE.  Further, using remotely sensed LAI 
we estimated the overall influence of plant biomass on 
GPP variability.  Assuming a 1-year turnover time we 
estimated the effect of below ground biomass on 
respiration variability.  Using biome specific turnover 
times would improve the timing of respiration anomalies.  
Adding an ocean model would improve the match with 
the observed CO2 growth rate.  Explicitly tracking 
various carbon and nitrogen pools would isolate the 
effects of land use, growing season length, nitrogen 
availability, and other factors that influence NEE inter-
annual variability.   

The tropical grasslands in South America and 
Africa show the highest NEE variability.  The large 
South American NEE anomaly is driven by shifting 
precipitation with ENSO, but may also result, in part, 
from ECMWF precipitation errors.  The simulated NEE 
in the northern hemisphere shows a pattern of 
alternating positive and negative anomalies with periods 
of 2-3 years and amplitudes of 0.2 to 0.4 GtC yr-1.  The 
alternating anomalies tend to cancel such that the 
tropics control global NEE inter-annual variability while 
the northern hemisphere controls the global NEE 
seasonal cycle. 

Due to cancellation and competing effects, no 
single climate variable controls global or regional NEE 
inter-annual variability.  Precipitation exerts the greatest 
influence (44% of global NEE variability), followed by 
LAI (23%), temperature (16%), and soil carbon (12%).  
Humidity and available light do not strongly influence 
global NEE variability.  Climate influences have strong 
regional differences: temperature influence on 
respiration dominates in the extra-tropics while 
precipitation influence on GPP and R dominates in the 
tropics.  For regions controlled by precipitation the soil 

water content relative to Wopt determines whether GPP 
or R controls NEE variability.  In dry soils ( optWW < ), 

GPP dominates; in wet soils ( optWW > ), R dominates.   

The influence of ENSO on NEE variability is 
consistent with that expected for shifting precipitation 
patterns in the tropics, especially for the large South 
American anomaly.  A definitive assessment requires a 
longer time record, since our simulation covered only 3 
ENSO cycles.  Except in northern Europe, temperature 
advection by the AO does not significantly influence 
NEE variability.  Neither the AO nor ENSO fully explain 
the temperature influence on respiration or the 
simulated NEE anomaly pattern in the northern 
hemisphere.   
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Figures for Schaefer et al. [2002]

Figure 1: Global NEE vs. Time

Figure 1. The Northern Hemisphere (NH) 
controls the seasonal changes in the simulated 
global NEE.  Negative NEE spikes every June 
represent NH summer (GPP dominates NEE).  
The positive peak every September represents 
NH fall (respiration dominates NEE).  The 
secondary minimum in November represents 
Southern Hemisphere (SH) spring.  The 
annual NEE is near zero, but varies slightly 
year to year. 
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Figure 2: Global NEE Anomaly vs. Time

Figure 2.  A 12-month running mean of the 
simulated global NEE anomalies captures the 
salient features and variability seen in anomalies 
of the measured global CO2 growth rate.  

N
EE

 (G
tC

 y
ea

r-1
)

Time (Year)

CO2 Growth RateNEE Anomaly



Figures for Schaefer et al. [2002]

Figure 3: NEE Standard Deviation Map

Figure 3.  A map of NEE standard deviation (µg 
C m-2 s-1) indicates grasslands of South America 
and Africa have the greatest inter-annual 
variability.  The large anomaly in South America 
results from drought stress.
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Figure 4: Typical NEE Anomaly Map

Figure 4. A map of typical simulated NEE 
anomalies (µg C m-2 s-1) for July 1984 shows a 
pattern of alternating positive and negative regions 
across the northern hemisphere.  These regional 
anomalies tend to cancel such that the tropics 
dominate global NEE inter-annual variability. 

0 4 8 12 16-4-8-12-16-20



Figures for Schaefer et al. [2002]

Figure 5: Relative Influence of R

Figure 5.  A map of the relative influence of 
respiration on NEE inter-annual variability (0 
means no influence, 1 means total control) 
indicates respiration dominates in high latitudes.  
GPP and respiration exert roughly equal 
influence in the tropics.  The relative influences 
of respiration and GPP are based on the relative 
magnitudes of their variances. 
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Figure 6: Relative Influence Maps

Figure 6.  The relative influences of each climate factor on the simulated NEE inter-annual 
variability show strong regional differences. The influences are based on relative magnitudes of 
variance for each climate factor (0 means no influence, 1 means total control).  Precipitation 
influence on GPP via soil moisture dominates in tropical grasslands and deserts. Temperature 
influence on respiration dominates at high latitudes. LAI influence represents climate influences 
during plant growth.   The incident light influences NEE variability only in regions of extensive 
rainfall.  Soil carbon has the greatest influence in the tropics.   Humidity exerts a fairly uniform, but 
weak global influence. 
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Figure 7: AO-T and AO-W Correlations 

(b) JJA Soil Moisture-AO Correlations

(a) JJA Temperature-AO Correlations

Figure 7.  The Arctic Oscillation (AO) advects
warm oceanic air into continental interiors, 
resulting in positive temperature and negative 
soil moisture correlations in northern Europe, 
central Canada and central Asia.  We focused on 
June-July-August (JJA) because 50% of all 
northern hemisphere NEE anomalies occur in the 
summer.  Southern hemisphere correlations 
probably do not reflect direct AO influence. 
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Figure 8: AO-NEE, AO-R, AO-GPP Correlations

(a) JJA NEE-AO Correlation

(b) JJA Respiration-AO Correlation

(c) JJA GPP-AO Correlation

Figure 8.  Respiration and GPP anomalies often 
cancel, resulting in very weak correlations 
between the Arctic Oscillation  (AO) and NEE. 
The strongest AO signal is in Northern Europe. 
Southern hemisphere correlations probably do 
not reflect direct AO influence.
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Figure 9: ENSO-T, ENSO-W Correlations

(b) Soil Moisture-ENSO Correlations

Figure 9.  Correlations with a Southern 
Oscillation Index indicate ENSO strongly 
influences global precipitation patterns, 
especially in the tropics. 

(a) Temperature-ENSO Correlations
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Figure 10: ENSO-T, ENSO-R, ENSO-GPP Correlations

(a) NEE-ENSO Correlation

(b) Respiration- ENSO Correlation

(c) GPP-ENSO Correlation

Figure 10. Correlations with a Southern 
Oscillation Index indicate ENSO influences 
NEE variability primarily in the tropics, 
consistent with expected shifts in precipitation. 

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6




